-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStatsTracker.cpp
executable file
·406 lines (334 loc) · 11.2 KB
/
StatsTracker.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#include "StatsTracker.hpp"
#include <iostream>
#include <cassert>
#include <cmath>
//
#define ABS(a) (((a) > 0)?(a): (- (a)))
uint8_t bam_map_qual(bam1_t* _bp);
int32_t bam_template_size(bam1_t* _bp)
{
return _bp->core.isize;
}
const uint32_t* bam_raw_cigar(bam1_t* _bp);
unsigned bam_n_cigar(bam1_t* _bp);
/// get insert size from bam record removing refskip (e.g. spliced) segments
int getFragSizeMinusSkip(bam1_t* b)
{
int fragSize = ABS(bam_template_size(b));
if (fragSize == 0)
return 0;
const uint32_t* bam_cigar = bam_raw_cigar(b); unsigned n_cigar = bam_n_cigar(b);
for (int i = 0; i < n_cigar; ++i)
if ((int)(1 + (bam_cigar[i] & BAM_CIGAR_MASK)) == CIGAR_SKIP)
fragSize -= (bam_cigar[i] >> BAM_CIGAR_SHIFT);
if (fragSize <= 0)
fprintf(stderr, "Unexpected fragment size (%d), deduced from bam record: [%s]\n", fragSize, bam_get_qname(b));
return fragSize;
}
static void populateCdfQuantiles(map_type &sizeMap,
const unsigned totalCount, std::vector<int> &quantiles) {
const unsigned quantileNum(quantiles.size());
const float pFactor(1 / static_cast<float>(totalCount));
unsigned fillBase(0);
unsigned cumulativeCount(0);
for (auto map_it = (sizeMap.rbegin()); map_it != sizeMap.rend(); map_it++) {
cumulativeCount += (map_it->second.count);
assert(cumulativeCount <= totalCount);
// update the hash map with cumulative prob value
map_it->second.cprob = (cumulativeCount * pFactor);
const unsigned fillNext = static_cast<unsigned>(rint(
map_it->second.cprob * quantileNum));
for (; fillBase < fillNext; fillBase++) {
quantiles[fillBase] = map_it->first;
}
}
}
void SizeDistribution::calcStats() const {
#ifdef DEBUG_RPS
log_os << "Calculating stats...\n"
<< "numOfSized=" << _sizeMap.size() << "\n";
#endif
_isStatsComputed = true;
if (_sizeMap.empty())
return;
populateCdfQuantiles(_sizeMap, _totalCount, _quantiles);
}
int SizeDistribution::quantile(const float prob) const {
assert((prob >= 0.) && (prob <= 1.));
static const int maxBin(_quantileNum - 1);
if (!_isStatsComputed)
calcStats();
int bin(static_cast<int>(ceil(prob * _quantileNum) - 1));
if (bin < 0)
bin = 0;
if (bin > maxBin)
bin = maxBin;
return _quantiles[bin];
}
float SizeDistribution::cdf(const int size) const {
if (!_isStatsComputed)
calcStats();
// map uses greater<int> for comp, so lower bound is "first element not greater than" size, from a list
// sorted high->low
const map_type::const_iterator sizeIter(_sizeMap.lower_bound(size));
if (sizeIter == _sizeMap.end())
return 0;
return sizeIter->second.cprob;
}
float SizeDistribution::pdf(const int size) const {
if (!_isStatsComputed)
calcStats();
static const unsigned targetSampleSize(5);
unsigned count(0);
int minSize(size);
int maxSize(size);
bool isMinBound(false);
bool isMaxBound(false);
/// scheme: get the five closest (in bin space) samples and sum them divided by the range required to find
/// them
// map uses greater<int> for comp, so lower bound is "first element not greater than" size, from a list
// sorted high->low
map_type::const_iterator lowIter(_sizeMap.lower_bound(size));
if (lowIter == _sizeMap.end()) {
isMinBound = true;
}
map_type::const_iterator highIter(lowIter);
if (highIter == _sizeMap.begin()) {
isMaxBound = true;
} else {
--highIter;
}
for (unsigned sampleIndex(0); sampleIndex < targetSampleSize;
++sampleIndex) {
// determine whether fwd or rev pointer is closer to size:
if (isMinBound && isMaxBound)
break;
bool isChooseLow(true);
if (isMinBound) {
isChooseLow = false;
} else if (isMaxBound) {
isChooseLow = true;
} else {
isChooseLow = (std::abs(lowIter->first - size)
<= std::abs(highIter->first - size));
}
if (isChooseLow) {
minSize = lowIter->first;
count += lowIter->second.count;
++lowIter;
if (lowIter == _sizeMap.end())
isMinBound = true;
} else {
maxSize = highIter->first;
count += highIter->second.count;
if (highIter == _sizeMap.begin()) {
isMaxBound = true;
} else {
--highIter;
}
}
}
assert(maxSize >= minSize);
return count
/ (static_cast<float>(_totalCount)
* static_cast<float>(1 + maxSize - minSize));
}
void SizeDistribution::filterObservationsOverQuantile(const float prob) {
const int maxSize(quantile(prob));
const map_type::iterator sizeBegin(_sizeMap.begin());
map_type::iterator sizeEnd(_sizeMap.lower_bound(maxSize));
for (map_type::iterator sizeIter(sizeBegin); sizeIter != sizeEnd;
++sizeIter) {
if (sizeIter->first <= maxSize) {
sizeEnd = sizeIter;
break;
}
_totalCount -= sizeIter->second.count;
}
_sizeMap.erase(sizeBegin, sizeEnd);
_isStatsComputed = false;
}
bool SizeDistribution::isStatSetMatch(const SizeDistribution &pss2) {
static const float cdfPrecision(0.001f);
for (float prob(0.05f); prob < 1; prob += 0.1f) {
// check if percentile values equal
if (std::abs(quantile(prob) - pss2.quantile(prob)) >= 1) {
return false;
}
// check the convergence of fragsize cdf
const int fragSize(pss2.quantile(prob));
if (std::abs(cdf(fragSize) - pss2.cdf(fragSize)) >= cdfPrecision) {
return false;
}
}
return true;
}
//**************************************************************************************/
void OrientTracker::finalize(const ReadCounter &readCounter) {
if (_isFinalized)
return;
bool isMaxIndex(false);
unsigned maxIndex(0);
for (unsigned i(0); i < _orientCount.size(); ++i) {
if ((!isMaxIndex) || (_orientCount[i] > _orientCount[maxIndex])) {
isMaxIndex = true;
maxIndex = i;
}
}
assert(isMaxIndex);
_finalOrient.setVal(maxIndex);
{
// make sure there's a dominant consensus orientation and that we have a minimum number of samples:
static const float minMaxFrac(0.9f);
if (!isOrientCountGood()) {
std::cerr << "Too few high-confidence read pairs ("
<< _totalOrientCount
<< ") to determine pair orientation for " << _rgLabel
<< "'\n" << "\tAt least " << getMinCount()
<< " high-confidence read pairs are required to determine pair orientation.\n"
<< readCounter << "\n";
}
const unsigned minMaxCount(
static_cast<unsigned>(minMaxFrac * _totalOrientCount));
if (_orientCount[maxIndex] < minMaxCount) {
const unsigned maxPercent(
(_orientCount[maxIndex] * 100) / _totalOrientCount);
std::cerr << "Can't determine consensus pair orientation of "
<< _rgLabel << ".\n"
<< "' (" << maxPercent << "% of " << _totalOrientCount
<< " total used read pairs)\n" << "\tThe fraction of '"
<< "' among total high-confidence read pairs needs to be more than "
<< minMaxFrac
<< " to determine consensus pair orientation.\n"
<< readCounter << "\n";
}
}
_isFinalized = true;
}
void StatsTracker::addBufferedData() {
for (const SimpleRead &srd : _buffer.getBufferedReads()) {
const PAIR_ORIENT::index_t ori(srd._orient);
addOrient(ori);
// we define "high-confidence" read pairs as those reads passing all filters
addHighConfidenceReadPairCount();
if (ori != PAIR_ORIENT::Rp)
continue;
addInsertSize(srd._insertSize);
}
}
bool StatsTracker::addObservation(PAIR_ORIENT::index_t ori, unsigned sz) {
bool isNormal(true);
_buffer.updateBuffer(ori, sz);
if (_buffer.isBufferFull()) {
// check abnormal fragment-size distribution in the buffer
if (_buffer.isBufferNormal()) {
addBufferedData();
checkInsertSizeCount();
} else {
isNormal = false;
#ifdef DEBUG_RPS
std::cerr << "The previous region (buffered) contains too many abnormal reads. "
<< "abnormalCount=" << _buffer.getAbnormalCount()
<< " observationCount=" << _buffer.getObservationCount() << "\n";
#endif
}
_buffer.clearBuffer();
}
return isNormal;
}
void StatsTracker::finalize() {
if (_isFinalized)
return;
// add the remaining data in the buffer
if (_buffer.isBufferNormal()) {
addBufferedData();
}
_buffer.clearBuffer();
// finalize pair orientation:
_stats.relOrients = _orientInfo.getConsensusOrient(_stats.readCounter);
if (_stats.relOrients.val() != PAIR_ORIENT::Rp) {
std::cerr << "Unexpected consensus read orientation ("
<< ") for " << _rgLabel << "\n"
<< "\tManta currently handles paired-end (FR) reads only.\n";
}
// finalize insert size distro:
if (!isInsertSizeConverged()) {
if (!isObservationCountGood()) {
std::cerr << "Can't generate pair statistics for " << _rgLabel
<< "\n"
<< "\tTotal high-confidence read pairs (FR) used for insert size estimation: "
<< insertSizeObservations() << "\n" << "\tAt least "
<< getMinObservationCount()
<< " high-confidence read pairs (FR) are required to estimate insert size.\n"
<< _stats.readCounter << "\n";
} else if (!isInsertSizeChecked()) {
updateInsertSizeConvergenceTest();
}
if (!isInsertSizeConverged()) {
std::cerr << "WARNING: read pair statistics did not converge for "
<< _rgLabel << "\n"
<< "\tTotal high-confidence read pairs (FR) used for insert size estimation: "
<< insertSizeObservations() << "\n" << _stats.readCounter
<< "\n";
}
}
// final step before saving is to cut-off the extreme end of the fragment size distribution, this
// is similar the some aligner's proper-pair bit definition of (3x the standard mean, etc.)
static const float filterQuant(0.9995f);
_stats.fragStats.filterObservationsOverQuantile(filterQuant);
_isFinalized = true;
}
/// given an input integer, return an integer with all but the highest 4 decimal digits set to zero
///
/// this method is not written effeciently, and not intended for general integer truncation.
/// it is used as part of a simple compression scheme for the fragment sizes of the frag size
/// distribution
///
static unsigned getSimplifiedFragSize(unsigned fragmentSize) {
unsigned fragSize(fragmentSize);
unsigned steps(0); // reduce fragsize resolution for very large sizes:
while (fragSize > 1000) {
fragSize /= 10;
steps++;
}
for (unsigned stepIndex(0); stepIndex < steps; ++stepIndex)
fragSize *= 10;
return fragSize;
}
/// This produces a useful result only when both reads align to the same
/// chromosome.
static PAIR_ORIENT::index_t getRelOrient(bam1_t *b) {
pos_t pos1 = b->core.pos;
bool is_fwd_strand1 = bam_is_fwd_strand(b);
pos_t pos2 = b->core.mpos;
bool is_fwd_strand2 = bam_is_mate_fwd_strand(b);
if (!bam_is_filter(b)) {
std::swap(pos1, pos2);
std::swap(is_fwd_strand1, is_fwd_strand2);
}
return PAIR_ORIENT::get_index(pos1, is_fwd_strand1, pos2, is_fwd_strand2);
}
void StatsTracker::handleReadRecordBasic(bam1_t *b) {
addReadCount(); //#记录该read的信息;结构体rgInfo记录了该slice的统计信息
if (bam_is_paired(b)) {
addPairedReadCount();
if (bam_map_qual(b) == 0)
addPairedLowMapqReadCount();
} else
addUnpairedReadCount();
}
RGT_RETURN StatsTracker::handleReadRecordCheck(bam1_t *b) {
if (isInsertSizeConverged())
return RGT_CONTINUE; //#过滤情况2
const PAIR_ORIENT::index_t ori(getRelOrient(b));
unsigned fragSize(0);
if (ori == PAIR_ORIENT::Rp)
fragSize = getSimplifiedFragSize(getFragSizeMinusSkip(b));
if (!addObservation(ori, fragSize))
return RGT_BREAK;
if (!isInsertSizeChecked())
return RGT_CONTINUE; //#过滤情况3,需要100K个read顺利pair了,才能通过
// check convergence
updateInsertSizeConvergenceTest();
return RGT_NORMAL;
}