forked from koehlp/wda_tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_multi_cam_clustering.py
executable file
·108 lines (66 loc) · 4.35 KB
/
run_multi_cam_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from utilities.python_path_utility import append_to_pythonpath
append_to_pythonpath(['feature_extractors/reid_strong_baseline'
,'feature_extractors/ABD_Net'
,'detectors/mmdetection'
,'evaluation/py_motmetrics'], __file__)
import os
os.environ["OMP_NUM_THREADS"] = "3" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "3" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "3" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "3" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "3" # export NUMEXPR_NUM_THREADS=6
import argparse
import mmcv
from feature_extractors.reid_strong_baseline.utils.logger import setup_logger
import json
from clustering.multi_cam_clustering import splitted_clustering_from_weights, find_clustering_weights
class Run_multi_cam_clustering:
def __init__(self,args):
self.cfg = mmcv.Config.fromfile(args.config).root
self.cfg.config_basename = os.path.basename(args.config).replace(".py","")
self.cfg.repository_root = os.path.abspath(os.path.dirname(__file__))
self.cfg.config_run_path = os.path.join(self.cfg.repository_root
, "work_dirs"
, "clustering"
, "config_runs"
, self.cfg.config_basename)
os.makedirs(self.cfg.config_run_path,exist_ok=True)
logger = setup_logger("clustering_logger", self.cfg.config_run_path, 0)
logger.info(json.dumps(self.cfg, sort_keys=True, indent=4))
def run(self):
if self.cfg.find_weights.run:
find_clustering_weights(test_track_results_folder=self.cfg.test_track_results_folder
, train_track_results_folder=self.cfg.train_track_results_folder
, work_dirs=self.cfg.work_dirs
, test_dataset_folder=self.cfg.test_dataset_folder
, train_dataset_folder=self.cfg.train_dataset_folder
, mc_cfg=self.cfg
, cam_count=self.cfg.cam_count
, take_frames_per_cam=self.cfg.find_weights.take_frames_per_cam
, weight_search_configs=self.cfg.find_weights.weight_search_configs
, dist_name_to_distance_weights=self.cfg.find_weights.dist_name_to_distance_weights
, config_basename=self.cfg.config_basename
, person_identifier=self.cfg.person_identifier
)
if self.cfg.cluster_from_weights.run:
splitted_clustering_from_weights(test_track_results_folder=self.cfg.test_track_results_folder
, train_track_results_folder=self.cfg.train_track_results_folder
, work_dirs=self.cfg.work_dirs
, test_dataset_folder=self.cfg.test_dataset_folder
, train_dataset_folder=self.cfg.train_dataset_folder
, mc_cfg=self.cfg
, cam_count=self.cfg.cam_count
, best_weights_path=self.cfg.cluster_from_weights.best_weights_path
, default_weights=self.cfg.cluster_from_weights.default_weights
, config_basename=self.cfg.config_basename
, person_identifier="person_id"
, n_split_parts=self.cfg.cluster_from_weights.split_count
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
return parser.parse_args()
if __name__=="__main__":
args = parse_args()
run_clustering = Run_multi_cam_clustering(args)
run_clustering.run()