-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_HCGMNet.py
217 lines (181 loc) · 8.02 KB
/
train_HCGMNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# HCGMNET: A HIERARCHICAL CHANGE GUIDING MAP NETWORK FOR CHANGE DETECTION,
# IGARSS 2023,Oral. Chengxi. Han, Chen WU, Do Du,https://arxiv.org/abs/2302.10420
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
import torch.nn.functional as F
#from catalyst.contrib.nn import Lookahead
import torch.nn as nn
import numpy as np
from torch import optim
import utils.visualization as visual
from utils import data_loader
from torch.optim import lr_scheduler
from tqdm import tqdm
import random
from utils.utils import clip_gradient, adjust_lr
from utils.metrics import Evaluator
from network.HCGMNet import HCGMNet
import time
start=time.time()
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def train(train_loader, val_loader, Eva_train, Eva_val, data_name, save_path, net, criterion, optimizer, num_epoches):
vis = visual.Visualization()
vis.create_summary(data_name)
global best_iou
epoch_loss = 0
net.train(True)
length = 0
st = time.time()
for i, (A, B, mask) in enumerate(tqdm(train_loader)):
A = A.cuda()
B = B.cuda()
Y = mask.cuda()
optimizer.zero_grad()
preds = net(A,B)
loss = criterion(preds[0], Y) + criterion(preds[1], Y)
# ---- loss function ----
loss.backward()
optimizer.step()
# scheduler.step()
epoch_loss += loss.item()
output = F.sigmoid(preds[1])
output[output >= 0.5] = 1
output[output < 0.5] = 0
pred = output.data.cpu().numpy().astype(int)
target = Y.cpu().numpy().astype(int)
Eva_train.add_batch(target, pred)
length += 1
IoU = Eva_train.Intersection_over_Union()[1]
Pre = Eva_train.Precision()[1]
Recall = Eva_train.Recall()[1]
F1 = Eva_train.F1()[1]
train_loss = epoch_loss / length
vis.add_scalar(epoch, IoU, 'mIoU')
vis.add_scalar(epoch, Pre, 'Precision')
vis.add_scalar(epoch, Recall, 'Recall')
vis.add_scalar(epoch, F1, 'F1')
vis.add_scalar(epoch, train_loss, 'train_loss')
print(
'Epoch [%d/%d], Loss: %.4f,\n[Training]IoU: %.4f, Precision:%.4f, Recall: %.4f, F1: %.4f' % (
epoch, num_epoches, \
train_loss, \
IoU, Pre, Recall, F1))
print("Strat validing!")
net.train(False)
net.eval()
for i, (A, B, mask, filename) in enumerate(tqdm(val_loader)):
with torch.no_grad():
A = A.cuda()
B = B.cuda()
Y = mask.cuda()
preds = net(A,B)[1]
output = F.sigmoid(preds)
output[output >= 0.5] = 1
output[output < 0.5] = 0
pred = output.data.cpu().numpy().astype(int)
target = Y.cpu().numpy().astype(int)
Eva_val.add_batch(target, pred)
length += 1
IoU = Eva_val.Intersection_over_Union()
Pre = Eva_val.Precision()
Recall = Eva_val.Recall()
F1 = Eva_val.F1()
print('[Validation] IoU: %.4f, Precision:%.4f, Recall: %.4f, F1: %.4f' % (IoU[1], Pre[1], Recall[1], F1[1]))
new_iou = IoU[1]
if new_iou >= best_iou:
best_iou = new_iou
best_epoch = epoch
best_net = net.state_dict()
print('Best Model Iou :%.4f; F1 :%.4f; Best epoch : %d' % (IoU[1], F1[1], best_epoch))
torch.save(best_net, save_path + '_best_iou.pth')
print('Best Model Iou :%.4f; F1 :%.4f' % (best_iou, F1[1]))
vis.close_summary()
if __name__ == '__main__':
seed_everything(42)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=50, help='epoch number') #修改这里!!!
parser.add_argument('--lr', type=float, default=5e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=8, help='training batch size') #修改这里!!!
parser.add_argument('--trainsize', type=int, default=256, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate')
parser.add_argument('--gpu_id', type=str, default='2', help='train use gpu') #修改这里!!!
parser.add_argument('--data_name', type=str, default='WHU', #修改这里!!!
help='the test rgb images root')
parser.add_argument('--model_name', type=str, default='HCGMNet',
help='the test rgb images root')
parser.add_argument('--save_path', type=str,
default='./output/')
opt = parser.parse_args()
# set the device for training
if opt.gpu_id == '0':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print('USE GPU 0')
elif opt.gpu_id == '1':
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
print('USE GPU 1')
if opt.gpu_id == '2':
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
print('USE GPU 2')
if opt.gpu_id == '3':
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
print('USE GPU 3')
opt.save_path = opt.save_path + opt.data_name + '/' + opt.model_name
if opt.data_name == 'LEVIR':
opt.train_root = '/data/chengxi.han/data/LEVIR CD Dataset256/train/'
opt.val_root = '/data/chengxi.han/data/LEVIR CD Dataset256/val/'
elif opt.data_name == 'WHU':
opt.train_root = '/data/chengxi.han/data/Building change detection dataset256/train/'
opt.val_root = '/data/chengxi.han/data/Building change detection dataset256/val/'
elif opt.data_name == 'CDD':
opt.train_root = '/data/chengxi.han/data/CDD_ChangeDetectionDataset/Real/subset/train/'
opt.val_root = '/data/chengxi.han/data/CDD_ChangeDetectionDataset/Real/subset/val/'
elif opt.data_name == 'DSIFN':
opt.train_root = '/data/chengxi.han/data/DSIFN256/train/'
opt.val_root = '/data/chengxi.han/data/DSIFN256/val/'
elif opt.data_name == 'SYSU':
opt.train_root = '/data/chengxi.han/data/SYSU-CD/train/'
opt.val_root = '/data/chengxi.han/data/SYSU-CD/val/'
elif opt.data_name == 'S2Looking':
opt.train_root = '/data/chengxi.han/data/S2Looking256/train/'
opt.val_root = '/data/chengxi.han/data/S2Looking256/val/'
train_loader = data_loader.get_loader(opt.train_root, opt.batchsize, opt.trainsize, num_workers=2, shuffle=True, pin_memory=True)
val_loader = data_loader.get_test_loader(opt.val_root, opt.batchsize, opt.trainsize, num_workers=2, shuffle=False, pin_memory=True)
Eva_train = Evaluator(num_class = 2)
Eva_val = Evaluator(num_class=2)
if opt.model_name == 'HCGMNet':
model = HCGMNet().cuda()
criterion = nn.BCEWithLogitsLoss().cuda()
# optimizer = torch.optim.Adam(model.parameters(), opt.lr)
#base_optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.0025)
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.0025)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=15, T_mult=2)
save_path = opt.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
data_name = opt.data_name
best_iou = 0.0
print("Start train...")
# args = parser.parse_args()
# print('现在的数据是:',args.data_name)
for epoch in range(1, opt.epoch):
for param_group in optimizer.param_groups:
print(param_group['lr'])
# cur_lr = adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
Eva_train.reset()
Eva_val.reset()
train(train_loader, val_loader, Eva_train, Eva_val, data_name, save_path, model, criterion, optimizer, opt.epoch)
lr_scheduler.step()
# print('现在的数据是:', args.data_name)
end=time.time()
print('程序训练train的时间为:',end-start)