forked from kakaxi314/BP-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedulers.py
36 lines (30 loc) · 1.03 KB
/
schedulers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# -*- coding: utf-8 -*-
# @File : schedulers.py
# @Project: BP-Net
# @Author : jie
# @Time : 5/11/22 3:50 PM
import random
import sys
from torch.optim.lr_scheduler import StepLR, MultiStepLR, OneCycleLR, LambdaLR, LinearLR, ExponentialLR
import numpy as np
import torch
def NoiseLR(**kwargs):
lr_sched = getattr(sys.modules[__name__], kwargs.pop('lr_sched', 'OneCycleLR'))
class sched(lr_sched):
def __init__(self, **kwargs):
self.noise_pct = kwargs.pop('noise_pct', 0.1)
self.noise_seed = kwargs.pop('noise_seed', 0)
super().__init__(**kwargs)
def get_lr(self):
"""
lrn: Learning Rate with Noise
"""
g = torch.Generator()
g.manual_seed(self.noise_seed + self.last_epoch)
noise = 2 * torch.rand(1, generator=g).item() - 1
lrs = super().get_lr()
lrn = []
for lr in lrs:
lrn.append(lr * (1 + self.noise_pct * noise))
return lrn
return sched(**kwargs)