Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Is it possible to see the benchmarks on jetson devices?(my goal is nano) #3

Open
aiLover2 opened this issue May 31, 2022 · 4 comments

Comments

@aiLover2
Copy link

No description provided.

@Broad-sky
Copy link
Owner

This project only provides an example. If you want to use it on Nano, you can quantify the model to see the effect.

@Wulingtian
Copy link

Wulingtian commented May 31, 2022

This project only provides an example. If you want to use it on Nano, you can quantify the model to see thQINGWEN

This project only provides an example. If you want to use it on Nano, you can quantify the model to see the effect.
请问如何生成onnx模型,我这边基于自己自己的数据训练了一个模型,成功生成onnx,onnx转换为trt模型报错了,如下:
WARNING: Skipping tactic 0 due to Myelin error: myelinTargetSetPropertyMemorySize called with invalid memory size (0).
ERROR: 10: [optimizer.cpp::nvinfer1::builder::`anonymous-namespace'::LeafCNode::computeCosts::2011] Error Code 10: Internal Error (Could not find any implementation for node {ForeignNode[Slice_362...Concat_599]}.)

@Broad-sky
Copy link
Owner

This project only provides an example. If you want to use it on Nano, you can quantify the model to see thQINGWEN

This project only provides an example. If you want to use it on Nano, you can quantify the model to see the effect.
请问如何生成onnx模型,我这边基于自己自己的数据训练了一个模型,成功生成onnx,onnx转换为trt模型报错了,如下:
WARNING: Skipping tactic 0 due to Myelin error: myelinTargetSetPropertyMemorySize called with invalid memory size (0).
ERROR: 10: [optimizer.cpp::nvinfer1::builder::`anonymous-namespace'::LeafCNode::computeCosts::2011] Error Code 10: Internal Error (Could not find any implementation for node {ForeignNode[Slice_362...Concat_599]}.)

对于自己训练的模型,将网络的输出作为onnx的输出,此时导出onnx。
如果使用官方模型,直接用readme文档提供的模型即可,不复杂!

@Wulingtian
Copy link

This project only provides an example. If you want to use it on Nano, you can quantify the model to see thQINGWEN

This project only provides an example. If you want to use it on Nano, you can quantify the model to see the effect.
请问如何生成onnx模型,我这边基于自己自己的数据训练了一个模型,成功生成onnx,onnx转换为trt模型报错了,如下:
WARNING: Skipping tactic 0 due to Myelin error: myelinTargetSetPropertyMemorySize called with invalid memory size (0).
ERROR: 10: [optimizer.cpp::nvinfer1::builder::`anonymous-namespace'::LeafCNode::computeCosts::2011] Error Code 10: Internal Error (Could not find any implementation for node {ForeignNode[Slice_362...Concat_599]}.)

对于自己训练的模型,将网络的输出作为onnx的输出,此时导出onnx。 如果使用官方模型,直接用readme文档提供的模型即可,不复杂!

现在r50模型可以正常推理了,但是我试了下r18 backbone的模型,发现推理时间比r50 还慢,只是把segmentation_trt.cpp里面的256替换为128

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants