-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvenn_diagram.py
327 lines (270 loc) · 12.8 KB
/
venn_diagram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from collections import defaultdict
from matplotlib import pyplot as plt
from matplotlib_venn import venn3, venn2
import numpy as np
import os
import pandas as pd
from utils import read_models, parse_reaction, parse_metabolite
# Get reactions from models, excluding exchanges
def get_reactions(model):
reactions = []
for r in model.reactions:
parse = parse_reaction(r)
if parse:
reactions.append(parse)
return reactions
# Get metabolites from models, excluding extracellular
def get_metabolites(model):
metabolites = []
for m in model.metabolites:
parse = parse_metabolite(m)
if parse:
metabolites.append(parse)
return metabolites
# Get genes from models
def get_genes(model):
genes = []
for gene in model.genes:
if gene.id[-2] == '_':
genes.append(gene.id[:-2])
else:
genes.append(gene.id)
return genes
# Find common reactions/metabolites/genes between models
def find_common(entities_a, entities_b, entities_c):
abc = set(entities_a).intersection(set(entities_b), set(entities_c))
ab_all = set(entities_a).intersection(set(entities_b))
ab = [r for r in ab_all if r not in abc]
ac_all = set(entities_a).intersection(set(entities_c))
ac = [r for r in ac_all if r not in abc]
a = [r for r in entities_a if r not in abc and r not in ab and r not in ac]
bc_all = set(entities_b).intersection(set(entities_c))
bc = [r for r in bc_all if r not in abc]
b = [r for r in entities_b if r not in abc and r not in ab and r not in bc]
c = [r for r in entities_c if r not in abc and r not in ac and r not in bc]
return len(a), len(b), len(ab), len(c), len(ac), len(bc), len(abc)
# Create a venn's diagram for 2 or 3 groups
def create_venn(values, labels, filename, title):
if len(labels) == 3:
venn3(subsets=values, set_labels=labels, set_colors=("orangered", "dodgerblue", "green"))
else:
venn2(subsets=values, set_labels=labels, set_colors=("orangered", "dodgerblue"))
plt.title(title)
plt.savefig(filename)
plt.show()
# Group
def run(models_list, analysis='Reactions', group='organism'):
entities = []
if len(models_list) <= 3:
if analysis == "Reactions":
for modelAnalysis in models_list:
entities.append(get_reactions(modelAnalysis.model))
elif analysis == "Metabolites":
for modelAnalysis in models_list:
entities.append(get_metabolites(modelAnalysis.model))
else:
for modelAnalysis in models_list:
entities.append(get_genes(modelAnalysis.model))
if len(models_list) == 3:
venn_values = find_common(entities[0], entities[1], entities[2])
elif len(models_list) == 2:
venn_values = find_common(entities[0], entities[1], [])
else:
raise ValueError('At least 2 groups are needed to perform Venn Diagrams')
else:
venn_values = run_random(models_list, analysis, group)
labels = []
if group == 'organism':
for model in models_list:
org = model.organism.split(' ')
label = '$\it{' + org[0][0] + '. ' + org[1] + '}$'
if label not in labels:
labels.append(label)
png_name = 'model_analysis/venn/' + analysis + '_' + models_list[0].method + '_' \
+ models_list[0].template + '.png'
elif group == 'template':
for model in models_list:
if model.template not in labels:
labels.append(model.template)
png_name = 'model_analysis/venn/' + models_list[0].organism_id + '_' + analysis + '_' \
+ models_list[0].method + '.png'
else:
for model in models_list:
if model.method == 'carveme':
labels.append(model.method)
else:
labels.append('bit_' + model.template)
png_name = 'model_analysis/venn/' + 'bitVScarveme' + '_' + models_list[0].organism_id + '_' + analysis + '_' + \
models_list[1].method + '.png'
create_venn(values=venn_values, labels=labels, filename=png_name, title=analysis)
# Groups models when models_list have more than 3 models (for random ones)
def run_random(models_list, analysis='Reactions', group='organism'):
groups = defaultdict(list)
if group == 'organism':
for model in models_list:
groups[model.organism_id].append(model)
elif group == 'template':
for model in models_list:
groups[model.template].append(model)
groups_list = list(groups.values())
all_entities = []
for g in groups_list:
if analysis == 'Reactions':
entities = [get_reactions(modelAnalysis.model) for modelAnalysis in g]
elif analysis == 'Metabolites':
entities = [get_metabolites(modelAnalysis.model) for modelAnalysis in g]
else:
entities = [get_genes(modelAnalysis.model) for modelAnalysis in g]
all_entities.append(entities)
all_values = []
for i in range(len(all_entities[0])):
for j in range(len(all_entities[1])):
for k in range(len(all_entities[2])):
venn_values = find_common(all_entities[0][i], all_entities[1][j], all_entities[2][k])
all_values.append(venn_values)
all_values_np = np.array(all_values)
mean_values = np.average(all_values_np, axis=0)
mean_values = np.rint(mean_values).astype(np.int32)
return mean_values
# Create Venn's Diagram for COGs analysis
def run_cogs_genomes(dataset):
df = pd.read_csv(dataset, sep='\t', header=0)
organisms = df['organism'].tolist()
cogs = df['cogs'].tolist()
cogs = [cog.split(',') for cog in cogs]
common = find_common(cogs[0], cogs[1], cogs[2])
labels = []
for organism in organisms:
org = organism.split('_')
label = '$\it{' + org[0][0] + '. ' + org[1] + '}$'
labels.append(label)
create_venn(values=common, labels=labels, filename='model_analysis/venn/COGs_org.png', title='COGs')
# Create Venn's Diagrams for all permissive models
def run_permissive(models_list, analysis='Reactions'):
models_permissive_all = [model for model in models_list if model.method == 'permissive' and model.template == 'all']
models_permissive_selected = [model for model in models_list if model.method == 'permissive' and
model.template == 'select']
models_permissive_random = [model for model in models_list if model.method == 'permissive' and
model.template == 'random']
run(models_list=models_permissive_all, analysis=analysis, group='organism') # all
run(models_list=models_permissive_selected, analysis=analysis, group='organism') # selected
run(models_list=models_permissive_random, analysis=analysis, group='organism') # random
# Create Venn's Diagrams for all restrictive models
def run_restrictive(models_list, analysis='Reactions'):
models_restrictive_all = [model for model in models_list if
model.method == 'restrictive' and model.template == 'all']
models_restrictive_selected = [model for model in models_list if model.method == 'restrictive' and
model.template == 'select']
models_restrictive_random = [model for model in models_list if model.method == 'restrictive' and
model.template == 'random']
run(models_list=models_restrictive_all, analysis=analysis, group='organism') # all
run(models_list=models_restrictive_selected, analysis=analysis, group='organism') # selected
run(models_list=models_restrictive_random, analysis=analysis, group='organism') # random
# Create Venn's Diagrams for all models of an organism
def run_organism(models_list, organism, method):
group = [model for model in models_list if organism in model.organism_id
and model.method == method]
run(models_list=group, analysis='Reactions', group='template')
# run(models_list=group, analysis='Metabolites', group='template')
# run(models_list=group, analysis='Genes', group='template')
# Compares CarveMe and bit selected models
def compare_carveme_bit(models_list, organism, method):
group = []
for model in models_list:
if organism in model.organism_id and model.method == 'carveme':
group.append(model)
if organism in model.organism_id and model.method == method and model.template == 'select':
group.append(model)
run(models_list=group, analysis='Reactions', group='method')
run(models_list=group, analysis='Metabolites', group='method')
run(models_list=group, analysis='Genes', group='method')
def models_statistics(models_list):
columns = ['method', 'template', 'organism', 'genes', 'reactions', 'exchanges', 'metabolites',
'extracellularMetabolites']
data = []
for modelAnalysis in models_list:
method = modelAnalysis.method
organism = modelAnalysis.organism_id
template = modelAnalysis.template
genes = len(get_genes(modelAnalysis.model))
reactions = len(get_reactions(modelAnalysis.model))
exchanges_n = len(modelAnalysis.model.exchanges)
metabolites = len(get_metabolites(modelAnalysis.model))
met_extra_n = len([m for m in modelAnalysis.model.metabolites if m.id.endswith('_b')])
line = [method, template, organism, genes, reactions, exchanges_n, metabolites, met_extra_n]
data.append(line)
df = pd.DataFrame(data, columns=columns)
df.to_csv('model_analysis/models_statistics.tsv', sep='\t')
def run_cogs_models(dataset, method='restrictive', template='selected',
filename='model_analysis/venn/COGs_select_models.png'):
df = pd.read_csv(dataset, sep='\t', header=0)
subdf = df.loc[df['model_id'].str.contains(template) & df['model_id'].str.contains(method)]
subdf = subdf.where(subdf != 1, subdf.columns.to_series(), axis=1)
model_ids = subdf['model_id'].to_list()
cogs = []
for ind, row in subdf.iterrows():
cogs.append(row.to_list()[1:])
cogs = [list(filter(lambda a: a != 0, cog)) for cog in cogs]
common = find_common(cogs[0], cogs[1], cogs[2])
labels = []
for name in model_ids:
org = name.split('_')[0]
label = '$\it{' + org[0] + '. ' + org[1:] + '}$'
labels.append(label)
create_venn(values=common, labels=labels, filename=filename, title='COGs')
if __name__ == '__main__':
# # read all models
# models = read_models(os.path.join(os.getcwd(), 'models'))
#
# # COMPARISON BETWEEN ORGANISMS
#
# # PERMISSIVE MODELS
# run_permissive(models_list=models, analysis='Reactions')
# run_permissive(models_list=models, analysis='Metabolites')
#
# # RESTRICTIVE MODELS
# run_restrictive(models_list=models, analysis='Reactions')
# run_restrictive(models_list=models, analysis='Metabolites')
#
# # CARVEME MODELS
# carveme = [model for model in models if 'carveme' in model.method]
#
# run(models_list=carveme, analysis="Reactions", group='organism')
# run(models_list=carveme, analysis="Metabolites", group='organism')
#
# # COMPARISON FOR EACH ORGANISM
#
# # M. tuberculosis
# run_organism(models_list=models, organism='Mtub', method='permissive')
# run_organism(models_list=models, organism='Mtub', method='restrictive')
#
# # S. thermophilus
# run_organism(models_list=models, organism='Sthe', method='permissive')
# run_organism(models_list=models, organism='Sthe', method='restrictive')
#
# # X. fastidiosa
# run_organism(models_list=models, organism='Xfas', method='permissive')
# run_organism(models_list=models, organism='Xfas', method='restrictive')
#
# # RUN FOR COGS
# run_cogs_genomes('genomes_analysis/protagonists2cogs.tsv')
run_cogs_models('model_analysis/pca_cogs/models_cog_analysis.tsv',
method='restrictive',
template='selected',
filename='model_analysis/venn/COGs_select_models.png')
run_cogs_models('model_analysis/pca_cogs/models_cog_analysis.tsv',
method='carveme',
template='carveme',
filename='model_analysis/venn/COGs_carveme_models.png')
#
# # COMPARISON bit vs CARVE ME
# compare_carveme_bit(models_list=models, organism='Mtub', method='permissive')
# compare_carveme_bit(models_list=models, organism='Sthe', method='permissive')
# compare_carveme_bit(models_list=models, organism='Xfas', method='permissive')
#
# compare_carveme_bit(models_list=models, organism='Mtub', method='restrictive')
# compare_carveme_bit(models_list=models, organism='Sthe', method='restrictive')
# compare_carveme_bit(models_list=models, organism='Xfas', method='restrictive')
#
# # create table
# models_statistics(models_list=models)