-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_models.py
57 lines (32 loc) · 1.37 KB
/
random_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import random
from collections import defaultdict
import pandas as pd
from genome_resources import read_bigg_models, get_organisms
random.seed(2)
def get_random_models(*species, organisms):
randoms = {}
for specie in species:
randoms[specie] = []
for _ in range(5):
random_organisms = random.sample(organisms, 3)
for random_organism in random_organisms:
random_model = random.choice([model for model in random_organism.bigg_ids])
randoms[specie].append((random_organism.name, random_model))
return randoms
def write_random_report(workdir, models):
dict_df = defaultdict(list)
for organism, iterations in models.items():
for organism_mame, bigg_model in iterations:
dict_df[f'{organism}_name'].append(organism_mame)
dict_df[f'{organism}_model'].append(bigg_model)
df = pd.DataFrame.from_dict(dict_df)
file_path = os.path.join(workdir, 'random_report.xlsx')
df.to_excel(file_path)
return df
if __name__ == '__main__':
directory = os.path.join(os.getcwd(), 'models')
bigg_models = read_bigg_models(workdir=directory)
bigg_organisms = get_organisms(bigg_models, verbose=True)
random_models = get_random_models('sth', 'mtb', 'xfa', organisms=bigg_organisms)
final_df = write_random_report(directory, random_models)