-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutput_xfortran_chat.txt
155 lines (138 loc) · 4.75 KB
/
output_xfortran_chat.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
Sample output of "python xfortran_chat.py":
gpt model: gpt-3.5-turbo-0613
**task: Write a Fortran program to compute Euler's number in a variable called `euler` using a Taylor series with the number of terms
`nterms` equal to 1000. Set `integer, parameter :: dp = kind(1.0d0)` and declare real variables
as `real(kind=dp)`. Use :: in declarations. Use implicit none on the 2nd line
and make sure to declare all variables. Name the program 'main`. You MUST use
```fortran to show the start of Fortran code. Use loop variables named i, j, k, and
remember to declare them if used.**
attempt 1
!! Here is the Fortran program that computes Euler's number using a Taylor series:
!!
program main
implicit none
integer, parameter :: dp = kind(1.0d0)
real(kind=dp) :: euler, term, factorial
integer :: nterms, i
! Set the number of terms in the Taylor series
nterms = 1000
! Initialize the variables
euler = 1.0_dp
term = 1.0_dp
factorial = 1.0_dp
! Compute Euler's number using the Taylor series
do i = 1, nterms
! Compute the terms in the Taylor series
term = term / i
! Compute the factorial
factorial = factorial * i
! Update the Euler's number
euler = euler + term
end do
! Print the result
print *, "Euler's number:", euler
end program main
!!
!! Make sure to save the program with a `.f90` or `.f95` extension, and then compile and run it using a Fortran compiler.
output:
Euler's number: 2.7182818284590455
attempt 2
!! Here is the Fortran program to compute Euler's number using a Taylor series:
!!
program main
implicit none
integer, parameter :: dp = kind(1.0d0)
real(kind=dp) euler
real(kind=dp) term, factorial
integer :: i, nterms
nterms = 1000
euler = 1.0_dp
do i = 1, nterms
term = 1.0_dp
factorial = 1.0_dp
do j = 1, i
factorial = factorial * j
term = term / j
end do
euler = euler + term
if (term < 1.0e-15_dp) exit
end do
write(*,*) "The value of Euler's number is:", euler
end program main
!!
!! In this program, we use a do loop to calculate each term in the Taylor series and add it to the `euler` variable. We also use a nested do loop to calculate the factorial and the term value. The loop variable `i` is used to keep track of the number of terms. The loop is terminated when the term value becomes very small (`< 1.0e-15`). Finally, we print the calculated value of Euler's number.
Compilation failed with the following output:
temp.f90:14:12:
14 | do j = 1, i
| 1
Error: Symbol 'j' at (1) has no IMPLICIT type
**task: Write a Fortran program to compute the prime numbers below 50. Set `integer, parameter :: dp = kind(1.0d0)` and declare real variables
as `real(kind=dp)`. Use :: in declarations. Use implicit none on the 2nd line
and make sure to declare all variables. Name the program 'main`. You MUST use
```fortran to show the start of Fortran code. Use loop variables named i, j, k, and
remember to declare them if used.**
attempt 1
program main
implicit none
integer, parameter :: dp = kind(1.0d0)
real(kind=dp) :: number
logical :: is_prime
write(*,*)"Prime numbers below 50:"
do number = 2, 50
is_prime = .TRUE.
do i = 2, sqrt(number)
if (mod(number, i) == 0) then
is_prime = .FALSE.
exit
end if
end do
if (is_prime) then
write(*,*) number
end if
end do
end program main
Compilation failed with the following output:
temp.f90:9:12:
9 | do i = 2, sqrt(number)
| 1
Error: Symbol 'i' at (1) has no IMPLICIT type
temp.f90:7:7:
7 | do number = 2, 50
| 1
Warning: Deleted feature: Loop variable at (1) must be integer
attempt 2
program main
implicit none
integer, parameter :: dp = kind(1.0d0)
real(kind=dp) :: i, j
integer :: k
do i = 2, 50
k = 0
do j = 2, i-1
if (mod(i, j) == 0) then
k = 1
exit
end if
end do
if (k .eq. 0) then
write(*,*) i
end if
end do
end program main
output:
2.0000000000000000
3.0000000000000000
5.0000000000000000
7.0000000000000000
11.000000000000000
13.000000000000000
17.000000000000000
19.000000000000000
23.000000000000000
29.000000000000000
31.000000000000000
37.000000000000000
41.000000000000000
43.000000000000000
47.000000000000000
time elapsed (sec): 28.33 for 2 tasks and 2 tries each.