-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerceptronTextClassification.py
208 lines (154 loc) · 7.81 KB
/
PerceptronTextClassification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
from nltk.stem.snowball import SnowballStemmer
punctuation_str = "!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"
stopwords_list = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up',
'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
stemmer = SnowballStemmer("english")
def processing_folder(folder):
folder = folder.replace("\\", "/")
list_of_files = os.listdir(folder)
return list_of_files, folder
def file_list_to_dict(list_of_files, folder):
email_dict = {}
for file in list_of_files:
path = folder+"/"+file
with open(path, 'r', errors='ignore') as f:
email_dict[file] = f.read()
return email_dict
def dict_to_wordcount_dict(email_dict, ignore_stopwords):
dict_with_word_count = {}
for email in email_dict:
email_dict[email] = email_dict[email].split()
word_list = [''.join(temp for temp in word if temp not in punctuation_str)
for word in email_dict[email]]
word_list = [temp for temp in word_list if temp]
temp_word_list = []
for word in word_list:
temp_word_list.append(stemmer.stem(word))
if ignore_stopwords == True:
for sw in stopwords_list:
if sw in temp_word_list:
temp_word_list.remove(sw)
email_dict[email] = temp_word_list
for word in temp_word_list:
if word in dict_with_word_count:
dict_with_word_count[word] = dict_with_word_count[word] + 1
else:
dict_with_word_count[word] = 1
return dict_with_word_count, email_dict
def calc_weights(num_iterations, eta, train_files_dict, train_wc_dict):
weights_dict = {'bias': 0.1}
for word in train_wc_dict:
weights_dict[word] = 0.0
for itr in range(num_iterations):
for file in train_files_dict:
pred_val = weights_dict['bias']
temp_dict = {}
for word in train_files_dict[file]:
if word in temp_dict:
temp_dict[word] = temp_dict[word] + 1
else:
temp_dict[word] = 1
for word in temp_dict:
if word in train_wc_dict:
pred_val += temp_dict[word] * weights_dict[word]
if pred_val > 0:
pred_class = 1
else:
pred_class = 0
if 'spam.txt' in file:
exep_class = 1
else:
exep_class = 0
# update weights
for word in temp_dict:
weights_dict[word] += eta * \
(exep_class - pred_class) * temp_dict[word]
return weights_dict
def get_accuracy(test_email_dict, weights_dict, ignore_stopwords):
total_count = 0
correct_count = 0
for file in test_email_dict:
pred_val = weights_dict['bias']
total_count += 1
temp_dict1 = {}
for word in test_email_dict[file]:
if word in temp_dict1:
temp_dict1[word] = temp_dict1[word] + 1
else:
temp_dict1[word] = 1
for word in temp_dict1:
if word in weights_dict:
pred_val += weights_dict[word] * temp_dict1[word]
if pred_val > 0:
if 'spam.txt' in file:
correct_count += 1
else:
if 'ham.txt' in file:
correct_count += 1
print("Accuracy: ", str(round((correct_count)/(total_count), 2)))
input_value = input(
"Enter the inputs with spaces: <Training Set Ham Path> <Training Set Spam Path> <Test Set Ham Path> <Test Set Spam Path> <learning Rate>: ")
input_value = input_value.split(' ')
def main(input_value, ignore_stopwords, num_iterations):
train_ham_inp_folder = input_value[0]
train_spam_inp_folder = input_value[1]
test_ham_inp_folder = input_value[2]
test_spam_inp_folder = input_value[3]
# num_iterations = int(input_value[4])
eta = float(input_value[4])
# Get Ham Data
train_ham_file_list, train_ham_inp_folder = processing_folder(
train_ham_inp_folder)
train_ham_email_dict = file_list_to_dict(
train_ham_file_list, train_ham_inp_folder)
train_ham_dict_count, train_ham_email_dict = dict_to_wordcount_dict(
train_ham_email_dict, ignore_stopwords)
# Get Spam Data
train_spam_file_list, train_spam_inp_folder = processing_folder(
train_spam_inp_folder)
train_spam_email_dict = file_list_to_dict(
train_spam_file_list, train_spam_inp_folder)
train_spam_dict_count, train_spam_email_dict = dict_to_wordcount_dict(
train_spam_email_dict, ignore_stopwords)
# combine spam and ham dicts
train_spam_email_dict.update(train_ham_email_dict)
train_email_dict = train_spam_email_dict
for key in train_spam_dict_count:
if key in train_ham_dict_count:
train_ham_dict_count[key] += train_spam_dict_count[key]
train_spam_dict_count.update(train_ham_dict_count)
train_dict_count = train_spam_dict_count
# Calculate weights
weights_dict = calc_weights(
num_iterations, eta, train_email_dict, train_dict_count)
# Testing Data
test_spam_file_list, test_spam_inp_folder = processing_folder(
test_spam_inp_folder)
test_spam_email_dict = file_list_to_dict(
test_spam_file_list, test_spam_inp_folder)
test_spam_dict_count, test_spam_email_dict = dict_to_wordcount_dict(
test_spam_email_dict, ignore_stopwords)
test_ham_file_list, test_ham_inp_folder = processing_folder(
test_ham_inp_folder)
test_ham_email_dict = file_list_to_dict(
test_ham_file_list, test_ham_inp_folder)
test_ham_dict_count, test_ham_email_dict = dict_to_wordcount_dict(
test_ham_email_dict, ignore_stopwords)
# combine spam and ham dicts
test_spam_email_dict.update(test_ham_email_dict)
test_email_dict = test_spam_email_dict
print("-----------------------")
if ignore_stopwords == True:
print("Without StopWords (eta = "+str(eta) +
", epochs = "+str(num_iterations) + "):")
else:
print("With StopWords (eta = "+str(eta) +
", epochs = "+str(num_iterations) + "):")
print("-----------------------")
get_accuracy(test_email_dict, weights_dict, ignore_stopwords)
# D:\data_TEMP\2\train\ham D:\data_TEMP\2\train\spam D:\data_TEMP\2\test\ham D:\data_TEMP\2\test\spam 0.01
for i in range(1, 21):
main(input_value, False, i)
for i in range(1, 21):
main(input_value, True, i)