-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhyper-parameters-configuration.txt
72 lines (66 loc) · 1.54 KB
/
hyper-parameters-configuration.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# ChemProt - the pre-trained model: BioBERT-large
{
"seed": 1,
"epoch": 10.0,
"learning_rate": 1e-05,
"n_gpu": 2,
"num_of_datasets": 1,
"per_device_train_batch_size": 8,
"warmup_ratio": 0.0,
"weight_decay": 0.0
}
# DDI - the pre-trained model: PubMedBERT-fulltext
{
"seed": 1,
"epoch": 10.0,
"learning_rate": 3e-05,
"n_gpu": 2,
"num_of_datasets": 1,
"per_device_train_batch_size": 8,
"warmup_ratio": 0.0,
"weight_decay": 0.0
}
# GAD - the pre-trained model: PubMedBERT-fulltext
{
"seed": 1,
"epoch": 3.0,
"learning_rate": "1e-05",
"n_gpu": 2,
"num_of_datasets": 1,
"per_device_train_batch_size": 4,
"warmup_ratio": 0.0,
"weight_decay": 0.0
}
# EU-ADR - the pre-trained model: BioBERT-base
{
"seed": 1,
"epoch": 3.0,
"learning_rate": "1e-05",
"n_gpu": 2,
"num_of_datasets": 10,
"per_device_train_batch_size": 4,
"warmup_ratio": 0.0,
"weight_decay": 0.0
}
# PPI (AIMed, BioInfer) - the pre-trained model: BioBERT-base
{
"seed": 1,
"epoch": 10.0,
"learning_rate": "5e-05",
"n_gpu": 2,
"num_of_datasets": 10,
"per_device_train_batch_size": 16,
"warmup_ratio": 0.0,
"weight_decay": 0.0
}
# PPI (HPRD50, IEPA, LLL)- the pre-trained model: BioBERT-base
{
"seed": 1,
"epoch": 10.0,
"learning_rate": "5e-05",
"n_gpu": 2,
"num_of_datasets": 10,
"per_device_train_batch_size": 8,
"warmup_ratio": 0.0,
"weight_decay": 0.0
}