-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuGeneGUI.py
2757 lines (2446 loc) · 135 KB
/
uGeneGUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
uGeneGUI.py
Version: 0.5
Beschreibung: This is the uGene graphical interface. It's built on Python-Dash and requires a browser for use..
Example: $> python uGeneGUI.py
Autor: Mattis Kaumann
The MIT License (MIT)
Copyright (c) 2023 Mattis Kaumann, Goethe-Universität Frankfurt am Main
Read more on LICENSE.txt
"""
import numpy as np
import math
import os
import socket
import json
import dash
import dash_bootstrap_components as dbc
import pandas as pd
import tkinter as tk
import tkinter.filedialog as fd
import plotly.graph_objs as go
import plotly.express as px
import subprocess
import time
import concurrent.futures
import scipy.stats as sst
import uGeneCore as uGene
# ------------------------------------------ Function declarations -----------------------------------------------------
def rgbStrToVec(color):
""" Converts a hex color code string into a numpy 3 vector.
:param color: Color code string. An example would be "#1A05FF".
:return: Returns a numpy 3 vector with red green and blue value.
"""
try:
return np.array([int("0x" + color[1:3], 16),
int("0x" + color[3:5], 16),
int("0x" + color[5:7], 16)])
except ... as error:
print("Error: required_functionalities->rgbStrToVec():", error)
return np.array([0, 0, 0])
def rgbVecToStr(c_vec):
""" Converts a numpy 3 vector within int variables into a rbg hex color
code string.
:param c_vec: Numpy 3 vector within int variables between 0 and 255.
:return: Returns a string with a hex color code.
"""
try:
# Ensure for all components to be in range 0 up to 255.
c_vec[0] = max(0, min(c_vec[0], 255))
c_vec[1] = max(0, min(c_vec[1], 255))
c_vec[2] = max(0, min(c_vec[2], 255))
return "#" + str(hex(c_vec[0]))[2:4].zfill(2) + \
str(hex(c_vec[1]))[2:4].zfill(2) + \
str(hex(c_vec[2]))[2:4].zfill(2)
except ... as error:
print("Error: required_functionalities->rgbVecToStr()", error)
return "#000000"
def colorRampPalette(colors, n):
""" Interpolate colors linearly to create a color palette.
:param colors: List with color hex strings which is based on.
:param n: Number of required colors. That effects the greatness of return list.
:return: Gives a list with hex color strings.
"""
result = []
c_len = len(colors)
if c_len < 1:
return []
if c_len == 1:
return colors * n
if n == 1:
return [colors[0]]
step = (len(colors) - 1) / (n - 1)
for i in range(0, n):
if math.floor(step * i) == math.ceil(step * i):
result.append(colors[math.floor(step * i)])
else:
v_color_a = rgbStrToVec(colors[math.floor(step * i)])
v_color_b = rgbStrToVec(colors[math.ceil(step * i)])
v_color = (v_color_a + (v_color_b - v_color_a) *
(step * i % 1)).astype(int)
result.append(rgbVecToStr(v_color))
return result
def ataExpress(x_2d=None, y_2d=None, x_3d=None, y_3d=None, z_3d=None, color=None, customdata=None, df=None,
dot_size=5, rev_size=0.5, opacity=0.9, border=None):
""" Create three plots with in just one trace and the given custom options.
All params until df be able to call a column name from dataframe.
:param x_2d: List of x values for the 2-dimensional plot or df column name.
:param y_2d: List of y values for the 2-dimensional plot or df column name.
:param x_3d: List of x values for the 3-dimensional plot or df column name.
:param y_3d: List of y values for the 3-dimensional plot or df column name.
:param z_3d: List of z values for the 3-dimensional plot or df column name.
:param color: List of colorcode strings supported by plotly or df column name which holds such list.
:param customdata: List of objects excluding listed strings. These will be interpreted as list of column names.
:param df: Pandas dataframe with any kind of plotting data.
:param dot_size: Int for scatterplot dot size.
:param rev_size: Float for sizing dots into scatterplot. For example legend dot size. View plotly doku.
:param opacity: Float between 1.0 and 0.0 witch defines the dot opacity.
:param border: List of colorcode strings supported by plotly or df column name which holds such list.
:return: Returns a triplet of plotly-go-scatter data objects.
"""
# Process column names argument handovers.
if df is not None:
if type(x_2d) == str and x_2d in df.columns:
x_2d = list(df[x_2d])
if type(y_2d) == str and y_2d in df.columns:
y_2d = list(df[y_2d])
if type(x_3d) == str and x_3d in df.columns:
x_3d = list(df[x_3d])
if type(y_3d) == str and y_3d in df.columns:
y_3d = list(df[y_3d])
if type(z_3d) == str and z_3d in df.columns:
z_3d = list(df[z_3d])
if type(color) == str:
if color in df.columns:
color = list(df[color])
else:
# Allow to use color string
color = len(x_3d) * [color]
if border and type(border) == str:
if border in df.columns:
border = list(df[border])
else:
# Allow to use color string
border = len(x_3d) * [border]
if type(customdata) == str:
customdata = [customdata]
if type(customdata) == list and all([type(it) == str and it in df.columns for it in customdata]):
customdata = df[customdata].values.tolist()
# Check if all data fit to each other. List of data have to hold the same amount of related data.
if not x_2d or not y_2d or not x_3d or not y_3d or not z_3d or not color or not customdata:
print("Error scatterExpress()! some arguments are none.")
return []
if not len(x_2d) == len(y_2d) == len(x_3d) == len(y_3d) == len(z_3d) == len(color) == len(customdata):
print("Error scatterExpress()! given data do not have consistent size.")
return []
# The border exists only if set. Otherwise, none.
if border and len(border) != len(x_2d):
print("Error scatterExpress()! given data do not have consistent size.")
return []
# Create one trace data storage solution with go.Scattergl.
data_2d = [go.Scattergl(
customdata=np.array(customdata),
hovertemplate="%{customdata[0]}<extra></extra>",
x=x_2d,
y=y_2d,
name="main_trace",
showlegend=False,
mode='markers',
marker=dict(
symbol='circle',
opacity=float(opacity),
size=float(dot_size),
sizemode='area',
sizeref=float(rev_size),
color=color,
line=dict(
width=dot_size * 0.25,
color=border if border else [app_con.const.color_limpid] * len(x_2d)
),
)
)]
# Create with go.Scatter3d a one trace data storage solution. Scatter3d is native supported by web gl.
data_3d = [go.Scatter3d(
customdata=np.array(customdata),
hovertemplate="%{customdata[0]}<extra></extra>",
x=x_3d,
y=y_3d,
z=z_3d,
name="main_trace",
showlegend=False,
mode='markers',
marker=dict(
symbol='circle',
opacity=float(opacity),
size=float(dot_size) * 0.3,
sizemode='area',
sizeref=float(rev_size),
color=color,
line=dict(
width=dot_size * 0.25,
color=border if border else [app_con.const.color_limpid] * len(x_2d)
),
)
)]
# Create with go.Splom a one trace data storage solution. Splom is native supported by web gl.
data_matrix_3d = [go.Splom(
customdata=np.array(customdata),
hovertemplate="%{customdata[0]}<extra></extra>",
dimensions=[{'axis': {'matches': True}, 'label': 'gene3d_x', 'values': x_3d},
{'axis': {'matches': True}, 'label': 'gene3d_y', 'values': y_3d},
{'axis': {'matches': True}, 'label': 'gene3d_z', 'values': z_3d}],
name="main_trace",
showlegend=False,
marker=dict(
symbol='circle',
opacity=float(opacity),
size=float(dot_size),
sizemode='area',
sizeref=float(rev_size),
color=color,
line=dict(
width=dot_size * 0.25,
color=border if border else [app_con.const.color_limpid] * len(x_2d)
),
)
)]
return data_2d, data_3d, data_matrix_3d
def processOptionDf(df, data_sel, opt_arrange, opt_subset):
""" Process dataframe reduction and arrangement based on the user selected options.
:param df: Dataframe within all current phylogenetic data and as well all needed cluster data, for example gene1d_x.
:param data_sel: A dictionary with data of selected genes as well there group name. Gene names are main keys.
:param opt_arrange: String of the current selected option how to order genes. One of app_con.const.gene_arrange
:param opt_subset: String of the current selected gene subset setting. One of app_con.const.gene_subset
:return: Returns the dataframe with the applied options.
"""
if opt_subset == "group-based" and data_sel:
print("Waring processOptionDf() fail. No groups are selected.")
# Filter by gene id´s form selection dict.
df = df[df['geneID'].isin(list(data_sel.keys()))]
# Just warn and continue with the full set to keep these code running.
if "gene1d_x" not in df.columns:
print("Waring processOptionDf() fail. Column gene1d_x should be available.")
# Process the gene rearrangement.
if opt_arrange == "1d-order" and "gene1d_x" in df.columns:
df = df.sort_values('gene1d_x').reset_index(drop=True)
elif opt_arrange == "group-based" or opt_arrange == "1d-group-based":
groups = {}
# All not grouped genes get ordered by origin or by 1d order. Only the grouped genes will put into first place.
if opt_arrange == "1d-group-based" and "gene1d_x" in df.columns:
gene_order = list(df.sort_values('gene1d_x')["geneID"].drop_duplicates())
else:
gene_order = list(df["geneID"].drop_duplicates())
for it in data_sel.keys():
gene_order.remove(it)
if data_sel[it]['name'] in groups:
groups[data_sel[it]['name']].append(it)
else:
groups[data_sel[it]['name']] = [it]
# New gene oder is get finished. The list gene_order holds the distinct new order of genes.
gene_order = sum([groups[itt] for itt in groups], []) + gene_order
df['geneID'] = df['geneID'].astype('category')
df['geneID'] = df['geneID'].cat.set_categories(gene_order)
df = df.sort_values('geneID').reset_index(drop=True)
# Just warn but give a dataframe back in any way.
return df
def askSaveHelp(title, filetypes):
"""Help function to start tkinter save dialog into an own process. This avoids a thread based bug.
:param title: Dialog box title string
:param filetypes: Tuple with in pairs. One pair have to be (description, file_extension)
:return: Path string to the selected location.
"""
tk_root = tk.Tk()
tk_root.withdraw()
path = fd.asksaveasfilename(title=title, filetypes=filetypes)
tk_root.destroy()
return path
def askSave(title, filetypes):
"""Function to start tkinter save dialog into an own process. This avoids a thread based bug.
:param title: Dialog box title string
:param filetypes: Tuple with in pairs. One pair have to be (description, file_extension)
:return: Path string to the selected location."""
try:
tk_root = tk.Tk()
tk_root.withdraw()
path = fd.asksaveasfilename(title=title, filetypes=filetypes)
tk_root.destroy()
return path
except Exception as error:
print("Warning solve open dialog.", error)
with concurrent.futures.ProcessPoolExecutor() as executor:
process = executor.submit(askSaveHelp, title, filetypes)
return process.result()
def askOpenHelp(title, filetypes):
"""Help function to start tkinter open file dialog into an own process. This avoids a thread based bug.
:param title: Dialog box title string
:param filetypes: Tuple with in pairs. One pair have to be (description, file_extension)
:return: Path string to the selected location.
"""
tk_root = tk.Tk()
tk_root.withdraw()
path = fd.askopenfilename(title=title, filetypes=filetypes)
tk_root.destroy()
return path
def askOpen(title, filetypes):
"""Function to start tkinter open file dialog into an own process. This avoids a thread based bug.
:param title: Dialog box title string
:param filetypes: Tuple with in pairs. One pair have to be (description, file_extension)
:return: Path string to the selected location.
"""
try:
tk_root = tk.Tk()
tk_root.withdraw()
path = fd.askopenfilename(title=title, filetypes=filetypes)
tk_root.destroy()
return path
except Exception as error:
print("Warning solve open dialog.", error)
with concurrent.futures.ProcessPoolExecutor() as executor:
process = executor.submit(askOpenHelp, title, filetypes)
return process.result()
def processAdvancedOptions(gene_task, taxa_task, str_adv_opt, task_arguments=[]):
# Clean from whitespaces and prepare to split. Every new line, tab and ; become a new command.
str_adv_opt = str_adv_opt.replace(" ", "").replace("\t", ";").replace("\n", ";")
# First of the tuple hold task options and second keeps all job options.
adv_opt = {'opt_general': ({}, {}), 'opt_gene': ({}, {}), 'opt_taxa': ({}, {})}
p_opt = 'opt_general'
# More or less parse the advance options input.
for option in str_adv_opt.split(";"):
if option[:len("gene:")] == "gene:":
p_opt = 'opt_gene'
option = option[len("gene:"):]
if option[:len("taxa:")] == "taxa:":
p_opt = 'opt_taxa'
option = option[len("taxa:"):]
if not option:
continue
option = option.split("=")
if len(option) != 2 or len(option[0]) < 1 or len(option[1]) < 1:
print("Error runCluster()! Can´t parse advance options.")
print(option)
else:
try:
if option[0] in task_arguments:
adv_opt[p_opt][0][str(option[0])] = json.loads(option[1].replace("'", '"'))
else:
adv_opt[p_opt][1][str(option[0])] = json.loads(option[1].replace("'", '"'))
except Exception as error:
print("Error runCluster()! Can´t interpret value by json.loads().", error)
print(option)
# Update the 'gene_task'. Remember, the options for a task and the options for a job are different things.
gene_task.update(adv_opt['opt_general'][0])
gene_task.update(adv_opt['opt_gene'][0])
for it in gene_task['jobs']:
it.update(adv_opt['opt_general'][1])
it.update(adv_opt['opt_gene'][1])
print("Updated gene task:")
print(gene_task)
# Update the 'taxa_task'. Remember, the options for a task and the options for a job are different things.
if taxa_task:
taxa_task.update(adv_opt['opt_general'][0])
taxa_task.update(adv_opt['opt_taxa'][0])
for it in gene_task['jobs']:
it.update(adv_opt['opt_general'][1])
it.update(adv_opt['opt_taxa'][1])
print("Updated taxa task:")
print(taxa_task)
return gene_task, taxa_task
def divideHelp(res, x):
""" Help funktion which it used into updateAdditionalData(). We like to get res and res/x without calculate res a
second time.
:param res: Any float
:param x: Int or float
:return: Tuple with res and res divide by x
"""
return res, res / x
def freePort():
""" Function to retrieve an available port. This ensures that PhyloProfile launches on an unoccupied port.
:return: Int representing the currently available port
"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
# Bind to port 0 will return a free port
s.bind(('127.0.0.1', 0))
ip, port = s.getsockname()
return port
# -------------------------------------------- Class declarations ------------------------------------------------------
class DI(dict):
"""Better dictionary class to access by d.value_name"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
# --------------------------------------- Global app container definition ----------------------------------------------
app_con = DI(
ids=DI(
coll_main_header="collapse_main_header",
tabs_ugene_viewer="main_tabs_ugene_viewer",
tab_ugene="main_tab_ugene",
tab_viewer="main_tab_viewer",
tab_download="main_tab_download",
tabs_show_data="tabs_show_data",
tab_show_phyloprofile="tab_show_phyloprofile",
input_int_nn="input_int_n_neighbors",
input_float_md="input_float_min_dist",
dd_use_metric="dd_use_metric",
bt_origin_order="bt_origin_order",
store_order_id="store_order_id_main",
bt_adv_opt="bt_advanced_opt",
coll_adv_opt="coll_advanced_opt",
text_adv_opt="text_advanced_opt",
row_adv_label="row_advanced_label",
bt_load_csv="bt_load_csv",
bt_show_result="bt_show_result",
bt_load_cluster="bt_load_cluster",
bt_load_groups="bt_load_groups",
spin_load_csv="spin_load_csv",
spin_show_result="spin_show_results",
spin_load_cluster="spin_load_cluster",
spin_load_groups="spin_load_groups",
user_location="user_location",
input_csv="main_input_csv",
input_cluster="main_input_cluster",
filename_csv="filename_csv_file",
filename_cluster="filename_cluster_file",
df_selection="df_selection",
plot_2d="main_plot_2d",
plot_3d="main_plot_3d",
scatter_3d="scatter_matrix_3d",
column_gene_viewer="column_gene_viewer",
column_stat="column_statistics",
coll_stat="collapse_statistics",
store_coll_stat="store_coll_stat",
store_sel_stat="store_selection_stat",
bt_unfold_stat="bt_unfold_statistics",
bt_load_stat="bt_load_statistics",
bar_plot_aaa="bar_plot_aaa",
bar_plot_bbb="bar_plot_bbb",
bar_plot_ccc="bar_plot_ccc",
coll_bar_ccc="coll_bar_ccc",
bar_plot_ddd="bar_plot_ddd",
coll_bar_ddd="coll_bar_ddd",
bar_plot_eee="bar_plot_eee",
coll_bar_eee="coll_bar_eee",
bar_plot_fff="bar_plot_fff",
coll_bar_fff="coll_bar_fff",
bar_plot_ggg="bar_plot_ggg",
coll_bar_ggg="coll_bar_ggg",
bar_plot_hhh="bar_plot_hhh",
coll_bar_hhh="coll_bar_hhh",
bar_plot_iii="bar_plot_iii",
coll_bar_iii="coll_bar_iii",
bar_plot_jjj="bar_plot_jjj",
coll_bar_jjj="coll_bar_jjj",
input_int_bar_n_best="input_int_bar_n_best",
filename_stat="filename_stat_file",
spin_load_stat="spin_load_stat",
bt_hypergeometirc_stat="bt_hypergeometirc_stat",
bt_bonferroni_cor="bt_bonferroni_correction",
coll_options="collapse_option_bar",
dd_color_pallette="dd_color_palette",
active_color_palette="active_color_palette",
slider_dot_size="slider_dot_size",
slider_opacity="slider_opacity",
card_phyloprofile="main_phyloprofile",
phylo_iframe="phylo_iframe",
di_ng="di_new_group",
di_ng_name="di_ng_name",
di_ng_color="di_ng_color",
di_ng_cancel="di_ng_cancel",
di_ng_create="di_ng_create",
bt_di_ng="bt_new_group",
bt_delete_group="bt_delete_group",
dd_active_group="dd_active_group",
dd_modify_tool="dd_modify_tool",
bt_add_list="bt_add_list",
di_add_list="di_add_list",
di_add_list_input="di_add_list_input",
di_add_list_cancel="di_add_list_cancel",
di_add_list_apply="di_add_list_apply",
sw_cluster_dir="sw_cluster_dir",
deleted_group="store_deleted_group",
dict_selection="store_selection",
table_selection="main_data_table",
dd_live_arrange="dd_live_arrange",
dd_live_subset="dd_live_subset",
bt_update_pyhlo="bt_update_pyhlo",
coll_pyhlo_opt="coll_pyhlo_opt",
debug_button="debug_button",
dummy_restyle="dummy_restyle",
dummy_message="dummy_message",
user_message="user_message",
bt_down_cluster="bt_down_cluster",
bt_down_phylo="bt_down_phylo",
bt_down_groups="bt_down_groups",
bt_down_cat="bt_down_cat",
dd_opt_subset="dd_opt_subset",
dd_opt_arrange="dd_opt_arrange",
spin_down_cluster="spin_down_cluster",
spin_down_phylo="spin_down_phylo",
spin_down_groups="spin_down_groups",
spin_down_cat="spin_down_cat"
),
data=DI(
# Data like the main profiles will be stored here. File path of loaded data will become the dict keys.
),
color_palettes=DI(
Rainbow=['#DD0000', '#FFFF00', '#309000', '#00FF00', '#00DDDD', '#0202BB', '#FF80CC'],
Black=['#000000', '#000000'],
Grey=['#7F7F7F', '#7F7F7F'],
Colorcycle=['#332288', '#88CCEE', '#44AA99', '#117733', '#999933', '#DDCC77', '#CC6677', '#882255', '#AA4499'],
# The following color schematics are sourced online to enhance accessibility for color-blind individuals.
# Author: Paul Tol
# Email: [email protected]
# Title: "Introduction to Colour Schemes"
# Accessed Date: 31.08.2023
# Source URL: https://personal.sron.nl/~pault/#fig:scheme_bright
Bright_Colorbilnd=['#4477AA', '#EE6677', '#228833', '#CCBB44', '#66CCEE', '#AA3377', '#BBBBBB'],
Vibrant_Colorblind=['#EE7733', '#0077BB', '#33BBEE', '#EE3377', '#CC3311', '#009988', '#BBBBBB'],
Dark_Colorblind=['#CC6677', '#332288', '#DDCC77', '#117733', '#88CCEE', '#882255', '#44AA99', '#999933',
'#AA4499'],
Bight_Compromise=['#77AADD', '#EE8866', '#EEDD88', '#FFAABB', '#99DDFF', '#44BB99', '#BBCC33', '#AAAA00',
'#DDDDDD']
),
const=DI(
ugene_gui_version="0.5",
color_limpid="rgba(235,235,250,0.0)",
color_phylo_defauild="#FFFFFF",
phylo_defaild_cat="__none__cat__",
temp_folder="/uGeneTemp/",
gene_col="geneID",
taxa_col="ncbiID",
phylo_col=['geneID', 'ncbiID', 'orthoID', 'FAS_F', 'FAS_B'],
phylo_cat_col=['geneID', 'name', 'color'],
umap_metrics=['euclidean', 'manhattan', 'chebyshev', 'minkowski'],
cluster_col_names=['gene1d_x', 'gene2d_x', 'gene2d_y', 'gene3d_x', 'gene3d_y', 'gene3d_z'],
gene_arrange=['1d-group-based', '1d-order', 'origin', 'group-based'],
gene_subset=['full', 'group-based'],
task_arguments=['dev_report', 'fill', 'pattern', 'drop', 'x_axis', 'y_axis', 'values']
)
)
# ------------------------------------------- Create main dash app -----------------------------------------------------
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.FONT_AWESOME])
app.layout = dbc.Container(fluid=True, children=[
dash.dcc.Location(id=app_con.ids.user_location),
dash.dcc.Store(id=app_con.ids.filename_csv, storage_type='memory'),
dash.dcc.Store(id=app_con.ids.filename_cluster, storage_type='memory'),
dash.dcc.Store(id=app_con.ids.filename_stat, storage_type='memory'),
dash.dcc.Store(id=app_con.ids.df_selection, storage_type='memory'),
dash.dcc.Store(id=app_con.ids.active_color_palette, storage_type='memory'),
dash.dcc.Store(id=app_con.ids.store_order_id, storage_type='memory'),
dash.dcc.Store(id=app_con.ids.deleted_group, storage_type='memory', data=dict()),
dash.dcc.Store(id=app_con.ids.dict_selection, storage_type='memory', data=dict()),
dash.dcc.Store(id=app_con.ids.store_coll_stat, data=False),
dash.dcc.Store(id=app_con.ids.store_sel_stat),
# Design display true content.
dbc.Collapse(id=app_con.ids.coll_main_header, is_open=True, children=[
dbc.Card(color="secondary", inverse=True, children=dbc.CardHeader([
dash.html.H1("uGene Dashboard"),
dash.html.Div(className="position-absolute top-0 end-0", children=[
dbc.Label("Version: " + str(app_con.const.ugene_gui_version) + "/" + str(uGene.UGENE_CORE_VERSION)),
])
])),
dash.html.Br()
]),
dbc.Tabs(id=app_con.ids.tabs_ugene_viewer, children=[
# File selection and analyse tools.
dbc.Tab(tab_id=app_con.ids.tab_ugene, label='uGene tool', children=[
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardHeader([
dash.html.H3("Create uMap cluster"),
]),
dbc.CardBody([
dbc.Row([
dash.html.P(
"Start your workflow here. Load a phyloprofile, do your clustering and at least " +
"view the results into the gene viewer tab."
),
]),
dash.html.Hr(),
dbc.Row([
dbc.Col(dash.html.Label("Adjust n_neighbors"), width=3),
dbc.Col(
dbc.Input(
type="number",
value=15,
step="1",
id=app_con.ids.input_int_nn
),
width=9
),
]),
dbc.Row([
dbc.Col(dash.html.Label("Adjust min_dist"), width=3),
dbc.Col(
dbc.Input(
type="number",
value=0.1,
step="0.001",
id=app_con.ids.input_float_md
),
width=9
),
]),
dbc.Row([
dbc.Col(dash.html.Label("Select metric"), width=3),
dbc.Col(width=9, children=[
dash.dcc.Dropdown(
id=app_con.ids.dd_use_metric,
clearable=False,
options=[{'label': it, 'value': it} for it in app_con.const.umap_metrics],
value=app_con.const.umap_metrics[0]
)
]),
]),
dash.html.Br(),
dbc.Row(id=app_con.ids.row_adv_label, children=[
dbc.Col(dash.html.Label("Use advanced options."), width=3),
dbc.Col(dbc.Checkbox(id=app_con.ids.bt_adv_opt, value=False))
]),
dbc.Tooltip(
"Here you can override all uMap parameters. Write Parameter = Value on each line. ",
"For more information on all parameters, please refer to the uGene documentation.",
target=app_con.ids.row_adv_label
),
dbc.Row([
dbc.Collapse(id=app_con.ids.coll_adv_opt, is_open=False, children=[
dbc.Textarea(id=app_con.ids.text_adv_opt, className="mb-5",
style={'height': '15vh'}, placeholder="Add here your adjustments"),
])
]),
dash.html.Hr(),
dbc.Row([
dbc.Col(children=[
dash.html.Div(className="hstack gap-2", children=[
dbc.Button("Select File", id=app_con.ids.bt_load_csv, color="success"),
dbc.Spinner(dash.html.Div(id=app_con.ids.spin_load_csv, children="...."),
size="sm")
])
]),
dbc.Col(children=[
dash.html.Div(className="hstack gap-2", children=[
dbc.Button("Start uGene", id=app_con.ids.bt_show_result, color="secondary"),
dbc.Spinner(dash.html.Div(id=app_con.ids.spin_show_result, children="...."),
size="sm")
])
])
])
])
])
]),
dbc.Col([
dbc.Card([
dbc.CardHeader([
dash.html.H3("Start over")
]),
dbc.CardBody([
dbc.Row([
dash.html.P(
"Here it is possible to load a already clustered file to view the clusters. " +
"Only .cluster.csv files are supported."
),
]),
dash.html.Hr(),
dbc.Row([
dash.html.Div(className="hstack gap-2", children=[
dbc.Button("Select File", id=app_con.ids.bt_load_cluster, color="success"),
dbc.Spinner(dash.html.Div(id=app_con.ids.spin_load_cluster, children="...."),
size="sm")
])
])
])
]),
dash.html.Br(),
dbc.Card([
dbc.CardHeader([
dash.html.H3("Load Previous Groups")
]),
dbc.CardBody([
dbc.Row([
dash.html.P(
"Here, you have the option to import your pre-defined handcrafted groups. " +
"Please note that only CSV files of categories downloaded from uGene are supported."
)
]),
dash.html.Hr(),
dbc.Row([
dash.html.Div(className="hstack gap-2", children=[
dbc.Button("Select File", id=app_con.ids.bt_load_groups, color="success"),
dbc.Spinner(dash.html.Div(id=app_con.ids.spin_load_groups, children="...."),
size="sm")
])
])
])
])
])
])
]),
# Display uGene Results
dbc.Tab(tab_id=app_con.ids.tab_viewer, label='uGene viewer', children=[
dbc.Row(className="hstack", children=[
dash.html.Div(id=app_con.ids.column_gene_viewer,
style={'width': '95vw', "pattingInline": "0,5vw", 'flexGrow': 0, 'flexShrink': 0,
'flexBasis': 'auto'},
children=[
dbc.Tabs(id=app_con.ids.tabs_show_data, children=[
dbc.Tab(label='2D View', children=[
dbc.Card(children=[
dbc.CardBody(children=[
dash.dcc.Graph(
style={'height': '70vh'},
className="plot",
id=app_con.ids.plot_2d,
config={"displayModeBar": True}
)
])
])
]),
dbc.Tab(label='3D View', children=[
dbc.Card(children=[
dbc.CardBody(children=[
dash.dcc.Graph(
style={'height': '70vh'},
id=app_con.ids.plot_3d,
config={"displayModeBar": True},
className="plot"
)
])
])
]),
dbc.Tab(label='3D Scatter', children=[
dbc.Card(children=[
dbc.CardBody(children=[
dash.dcc.Graph(
style={'height': '70vh'},
id=app_con.ids.scatter_3d,
config={"displayModeBar": True},
className="plot"
)
])
])
]),
dbc.Tab(tab_id=app_con.ids.tab_show_phyloprofile, label='Phyloprofile', children=[
dbc.Card(children=[
dbc.CardBody(style={'height': '70vh'}, children=[
dash.html.Iframe(style={'height': '90%', 'width': '100%'},
id=app_con.ids.phylo_iframe,
srcDoc='<p>Load Phyloprofile ...</p>',
src='about:blank')
])
])
]),
])
]),
# Additional statistic data.
dash.html.Div(
id=app_con.ids.column_stat,
style={'width': '3vw',
"paddingInline": "0.5vw",
'flexGrow': 0,
'flexShrink': 0,
'flexBasis': 'auto'
},
children=[
dash.html.Br(),
dbc.Card(className="hstack", style={'flexShrink': 1}, children=[
dash.html.Div(style={'height': '73vh', 'width': '2vw'}, children=[
dbc.Button(">", id=app_con.ids.bt_unfold_stat, color="primary",
style={'width': '100%', 'height': "100%"})
]),
dbc.Collapse(id=app_con.ids.coll_stat, dimension="width", is_open=False, children=[
dbc.CardBody(style={"width": "25vw", "padding": "0.5vw", 'height': '73vh',
'overflowY': 'scroll'}, children=[
dbc.Row([
dbc.Col(dash.html.H4("Additional Statistics")),
dbc.Col(children=[
dash.html.Div(className="hstack gap-2", children=[
dbc.Button("Load Data", id=app_con.ids.bt_load_stat, color="primary"),
dbc.Spinner(
dash.html.Div(id=app_con.ids.spin_load_stat, children="...."),
size="sm")
])
])
]),
dash.html.Br(),
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_aaa,
config={"displayModeBar": True},
className="plot"
)
]),
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_bbb,
config={"displayModeBar": True},
className="plot"
)
]),
dbc.Collapse(id=app_con.ids.coll_bar_ccc, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_ccc,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_ddd, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_ddd,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_eee, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_eee,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_fff, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_fff,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_ggg, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_ggg,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_hhh, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_hhh,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_iii, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_iii,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Collapse(id=app_con.ids.coll_bar_jjj, is_open=False, children=[
dbc.Row([
dash.dcc.Graph(
style={'height': '35vh'},
id=app_con.ids.bar_plot_jjj,
config={"displayModeBar": True},
className="plot"
)
])
]),
dbc.Row([
dbc.Col(dash.html.Label("Setup number of displayed bars:"), width=9),
dbc.Col(dbc.Input(type="number", value=5, step="1",
id=app_con.ids.input_int_bar_n_best), width=3)
]),
dbc.Row([
dbc.Col(dash.html.Label("Use hyper-geometric statistic:"), width=9),
dbc.Col(dbc.Checkbox(id=app_con.ids.bt_hypergeometirc_stat, value=False),
width=3)
]),
dbc.Row([
dbc.Col(dash.html.Label("Use Bonferroni correction (p = 0.05):"), width=9),
dbc.Col(dbc.Checkbox(id=app_con.ids.bt_bonferroni_cor, value=False), width=3)
])
])
])
])
])
]),
# Modify plot settings
dbc.Collapse(id=app_con.ids.coll_options, is_open=True, children=[
dbc.Row([
dbc.Col([
dash.html.Span("Pick a color palette"),
dash.dcc.Dropdown(
id=app_con.ids.dd_color_pallette,
clearable=False,
options=[{'label': it.replace('_', ' '), 'value': it} for it in app_con.color_palettes],
placeholder="Default palette"
)
]),
dbc.Col(children=[
dash.html.Span("Pick a dot size"),
dash.dcc.Slider(id=app_con.ids.slider_dot_size, min=1, max=20, step=1, value=10)
]),
dbc.Col(children=[
dash.html.Span("Pick a opacity"),
dash.dcc.Slider(id=app_con.ids.slider_opacity, min=0.2, max=1.0, step=0.1, value=0.9)
]),
dbc.Col(children=[
dash.html.Span("Gene color by origin order"),
dbc.Checkbox(id=app_con.ids.bt_origin_order, value=False)
])
]),
dbc.Row([