|
| 1 | +import random |
| 2 | +from functools import partial |
| 3 | +import torch |
| 4 | +from torch import nn, einsum |
| 5 | +from einops import rearrange, repeat |
| 6 | +from einops.layers.torch import Rearrange, Reduce |
| 7 | + |
| 8 | +from timm.models.vision_transformer import _cfg |
| 9 | + |
| 10 | + |
| 11 | +def cast_tuple(val, length=1): |
| 12 | + return val if isinstance(val, tuple) else ((val,) * length) |
| 13 | + |
| 14 | + |
| 15 | +class ChannelAdjustmentLayer1(nn.Module): |
| 16 | + def __init__(self, target_channels=256): |
| 17 | + super(ChannelAdjustmentLayer1, self).__init__() |
| 18 | + self.target_channels = target_channels |
| 19 | + |
| 20 | + def forward(self, x): |
| 21 | + B, C, H, W = x.size() |
| 22 | + |
| 23 | + if C == self.target_channels: |
| 24 | + return x |
| 25 | + |
| 26 | + if C < self.target_channels: |
| 27 | + # 逐个通道复制,放到被复制通道的后面 |
| 28 | + num_channels_to_copy = self.target_channels - C |
| 29 | + for i in range(num_channels_to_copy): |
| 30 | + channel_to_copy = torch.randint(0, C, (1,)) |
| 31 | + x = torch.cat([x, x[:, channel_to_copy, :, :]], dim=1) |
| 32 | + |
| 33 | + else: |
| 34 | + # 逐个通道删除 |
| 35 | + num_channels_to_remove = C - self.target_channels |
| 36 | + for i in range(num_channels_to_remove): |
| 37 | + rand=torch.randint(0,x.shape[1],(1,)) |
| 38 | + x = torch.cat([x[:, :rand, :, :], x[:, rand+1:, :, :]], dim=1) |
| 39 | + return x |
| 40 | + |
| 41 | + |
| 42 | +# 通道校准策略2 |
| 43 | +class ChannelAdjustmentLayer2(nn.Module): |
| 44 | + def __init__(self, target_channels=256): |
| 45 | + super(ChannelAdjustmentLayer2, self).__init__() |
| 46 | + self.target_channels = target_channels |
| 47 | + |
| 48 | + def forward(self, x): |
| 49 | + B, C, H, W = x.size() |
| 50 | + |
| 51 | + if C == self.target_channels: |
| 52 | + return x |
| 53 | + |
| 54 | + if C < self.target_channels: |
| 55 | + # 计算需要扩展的通道数 |
| 56 | + num_channels_to_expand = self.target_channels - C |
| 57 | + # 计算每一端需要扩展的通道数 |
| 58 | + channels_to_expand_per_side = num_channels_to_expand // 2 |
| 59 | + |
| 60 | + # 两端均匀镜像扩展 |
| 61 | + x = torch.cat([x[:, :channels_to_expand_per_side+1, :, :].flip(dims=(1,)), |
| 62 | + x, |
| 63 | + x[:, -channels_to_expand_per_side:, :, :].flip(dims=(1,))], dim=1) |
| 64 | + |
| 65 | + else: |
| 66 | + # 计算需要删除的通道数 |
| 67 | + num_channels_to_remove = C - self.target_channels |
| 68 | + # 计算每一端需要删除的通道数 |
| 69 | + channels_to_remove_per_side = num_channels_to_remove // 2 |
| 70 | + |
| 71 | + # 两端均匀镜像删除 |
| 72 | + x = x[:, channels_to_remove_per_side:-channels_to_remove_per_side, :, :] |
| 73 | + |
| 74 | + return x[:, :self.target_channels, :, :] |
| 75 | + |
| 76 | + |
| 77 | +# 通道正则化 |
| 78 | +class ChanLayerNorm(nn.Module): |
| 79 | + def __init__(self, dim, eps=1e-5): |
| 80 | + super().__init__() |
| 81 | + self.eps = eps |
| 82 | + self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) |
| 83 | + self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) |
| 84 | + |
| 85 | + def forward(self, x): |
| 86 | + var = torch.var(x, dim=1, unbiased=False, keepdim=True) |
| 87 | + mean = torch.mean(x, dim=1, keepdim=True) |
| 88 | + return (x - mean) / (var + self.eps).sqrt() * self.g + self.b |
| 89 | + |
| 90 | + |
| 91 | +class PreNorm(nn.Module): |
| 92 | + def __init__(self, dim, fn): |
| 93 | + super().__init__() |
| 94 | + self.norm = ChanLayerNorm(dim) |
| 95 | + self.fn = fn |
| 96 | + |
| 97 | + def forward(self, x): |
| 98 | + return self.fn(self.norm(x)) |
| 99 | + |
| 100 | + |
| 101 | +# 通道校准模块 |
| 102 | +class SpectralCalibration(nn.Module): |
| 103 | + def __init__(self, dim_in, dim_out): |
| 104 | + super().__init__() |
| 105 | + self.conv = nn.Conv2d(dim_in, dim_out, 1) |
| 106 | + self.bn = nn.BatchNorm2d(dim_out) |
| 107 | + self.relu = nn.ReLU(inplace=True) |
| 108 | + |
| 109 | + def forward(self, x): |
| 110 | + x = self.conv(x) |
| 111 | + x = self.bn(x) |
| 112 | + x = self.relu(x) |
| 113 | + return x |
| 114 | + |
| 115 | + |
| 116 | +class GSC(nn.Module): |
| 117 | + def __init__(self, dim_in, dim_out, padding=1, num_groups=8): |
| 118 | + super().__init__() |
| 119 | + self.dim_out=dim_out |
| 120 | + self.gpwc = nn.Conv2d(dim_in, dim_out, groups=num_groups, kernel_size=1) |
| 121 | + self.dwc1 = nn.Conv2d(dim_out//2, dim_out//2, groups=dim_out//2,kernel_size=1) |
| 122 | + self.dwc2 = nn.Conv2d(dim_out//2, dim_out//2, groups=dim_out//2,padding=1, kernel_size=3) |
| 123 | + self.dwc3 = nn.Conv2d(dim_out//4, dim_out//4, groups=dim_out//4,padding=2,kernel_size=5) |
| 124 | + self.dwc4 = nn.Conv2d(dim_out//4, dim_out//4, groups=dim_out//4,padding=3, kernel_size=7) |
| 125 | + self.bn = nn.BatchNorm2d(dim_out) |
| 126 | + self.relu = nn.ReLU(inplace=True) |
| 127 | + |
| 128 | + def forward(self, x): |
| 129 | + x=self.gpwc(x) |
| 130 | + x1=x[:,:self.dim_out//2,:,:] |
| 131 | + x2=x[:,self.dim_out//2:,:,:] |
| 132 | + x3=self.dwc2(x1) |
| 133 | + x4=self.dwc2(x2) |
| 134 | + x5=x3+x4/10 |
| 135 | + x6=x4+x3/10 |
| 136 | + x=torch.cat((x5,x6),dim=1)+x |
| 137 | + return self.relu(self.bn(x)) |
| 138 | + |
| 139 | + |
| 140 | +class GSSA(nn.Module): |
| 141 | + def __init__( |
| 142 | + self, |
| 143 | + dim, |
| 144 | + heads=8, |
| 145 | + dim_head=16, |
| 146 | + dropout=0., |
| 147 | + group_spatial_size=3 |
| 148 | + ): |
| 149 | + super().__init__() |
| 150 | + self.heads = heads |
| 151 | + self.scale = dim_head ** -0.5 |
| 152 | + self.group_spatial_size = group_spatial_size |
| 153 | + inner_dim = dim_head * heads |
| 154 | + |
| 155 | + self.attend = nn.Sequential( |
| 156 | + nn.Softmax(dim=-1), |
| 157 | + nn.Dropout(dropout) |
| 158 | + ) |
| 159 | + |
| 160 | + self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias=False) |
| 161 | + self.to_qkv1 = nn.Conv1d(128, 16, 1, bias=False) |
| 162 | + self.group_tokens = nn.Parameter(torch.randn(dim)) |
| 163 | + dim_out=128 |
| 164 | + self.gc = nn.Conv2d(dim_out, dim_out, kernel_size=7, groups=dim_out, stride=1) |
| 165 | + |
| 166 | + self.group_tokens_to_qk = nn.Sequential( |
| 167 | + nn.LayerNorm(dim_head), |
| 168 | + nn.GELU(), |
| 169 | + Rearrange('b h n c -> b (h c) n'), |
| 170 | + nn.Conv1d(inner_dim, inner_dim * 2, 1), |
| 171 | + Rearrange('b (h c) n -> b h n c', h=heads), |
| 172 | + ) |
| 173 | + |
| 174 | + self.group_attend = nn.Sequential( |
| 175 | + nn.Softmax(dim=-1), |
| 176 | + nn.Dropout(dropout) |
| 177 | + ) |
| 178 | + |
| 179 | + self.to_out = nn.Sequential( |
| 180 | + nn.Conv2d(inner_dim, dim, 1), |
| 181 | + nn.Dropout(dropout) |
| 182 | + ) |
| 183 | + |
| 184 | + def forward(self, x): |
| 185 | + |
| 186 | + batch, height, width, heads, gss = x.shape[0], *x.shape[-2:], self.heads, self.group_spatial_size |
| 187 | + assert (height % gss) == 0 and ( |
| 188 | + width % gss) == 0, f'height {height} and width {width} must be divisible by group spatial size {gss}' |
| 189 | + num_groups = (height // gss) * (width // gss) |
| 190 | + w=self.gc(x) |
| 191 | + |
| 192 | + w= rearrange(w, 'b c h w -> (b h w) c 1') |
| 193 | + |
| 194 | + x = rearrange(x, 'b c (h g1) (w g2) -> (b h w) c (g1 g2)', g1=gss, g2=gss) |
| 195 | + |
| 196 | + #w = repeat(self.group_tokens, 'c -> b c 1', b=x.shape[0]) |
| 197 | + |
| 198 | + x = torch.cat((w, x), dim=-1) |
| 199 | + q, k, v = self.to_qkv(x).chunk(3, dim=1) |
| 200 | + |
| 201 | + q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h=heads), (q, k, v)) |
| 202 | + |
| 203 | + q = q * self.scale |
| 204 | + |
| 205 | + dots = einsum('b h i d, b h j d -> b h i j', q, k) |
| 206 | + |
| 207 | + attn = self.attend(dots) |
| 208 | + |
| 209 | + out = torch.matmul(attn, v) |
| 210 | + group_tokens, grouped_fmaps = out[:, :, 0], out[:, :, 1:] |
| 211 | + |
| 212 | + if num_groups == 1: |
| 213 | + fmap = rearrange(grouped_fmaps, '(b x y) h (g1 g2) d -> b (h d) (x g1) (y g2)', x=height // gss, |
| 214 | + y=width // gss, g=gss, g2=gss) |
| 215 | + return self.to_out(fmap) |
| 216 | + |
| 217 | + #group_tokens=group_tokens+w1 |
| 218 | + |
| 219 | + group_tokens = rearrange(group_tokens, '(b x y) h d -> b h (x y) d', x=height // gss, y=width // gss) |
| 220 | + |
| 221 | + grouped_fmaps = rearrange(grouped_fmaps, '(b x y) h n d -> b h (x y) n d', x=height // gss, y=width // gss) |
| 222 | + |
| 223 | + w_q, w_k = self.group_tokens_to_qk(group_tokens).chunk(2, dim=-1) |
| 224 | + |
| 225 | + w_q = w_q * self.scale |
| 226 | + |
| 227 | + w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) |
| 228 | + |
| 229 | + w_attn = self.group_attend(w_dots) |
| 230 | + |
| 231 | + aggregated_grouped_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, grouped_fmaps) |
| 232 | + |
| 233 | + fmap = rearrange(aggregated_grouped_fmap, 'b h (x y) (g1 g2) d -> b (h d) (x g1) (y g2)', x=height // gss, |
| 234 | + y=width // gss, g1=gss, g2=gss) |
| 235 | + return self.to_out(fmap) |
| 236 | + |
| 237 | + |
| 238 | +class Transformer(nn.Module): |
| 239 | + def __init__( |
| 240 | + self, |
| 241 | + dim, |
| 242 | + depth, |
| 243 | + dim_head=16, |
| 244 | + heads=8, |
| 245 | + dropout=0., |
| 246 | + norm_output=True, |
| 247 | + groupsize=4 |
| 248 | + ): |
| 249 | + super().__init__() |
| 250 | + self.layers = nn.ModuleList([]) |
| 251 | + |
| 252 | + for ind in range(depth): |
| 253 | + self.layers.append( |
| 254 | + PreNorm(dim, GSSA(dim, group_spatial_size=groupsize, heads=heads, dim_head=dim_head, dropout=dropout)) |
| 255 | + ) |
| 256 | + |
| 257 | + self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity() |
| 258 | + |
| 259 | + def forward(self, x): |
| 260 | + for attn in self.layers: |
| 261 | + x = attn(x) |
| 262 | + |
| 263 | + return self.norm(x) |
| 264 | + |
| 265 | + |
| 266 | +class GSCViT(nn.Module): |
| 267 | + def __init__( |
| 268 | + self, |
| 269 | + *, |
| 270 | + num_classes, |
| 271 | + depth, |
| 272 | + heads, |
| 273 | + group_spatial_size, |
| 274 | + channels=200, |
| 275 | + dropout=0.1, |
| 276 | + padding, |
| 277 | + dims=(256, 128, 64, 32), |
| 278 | + num_groups=[16,16,16] |
| 279 | + ): |
| 280 | + super().__init__() |
| 281 | + num_stages = 1#len(depth) |
| 282 | + |
| 283 | + dim_pairs = tuple(zip(dims[:-1], dims[1:])) |
| 284 | + hyperparams_per_stage = [heads] |
| 285 | + hyperparams_per_stage = list(map(partial(cast_tuple, length=num_stages), hyperparams_per_stage)) |
| 286 | + assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage))) |
| 287 | + self.sc = SpectralCalibration(channels, 256) |
| 288 | + self.bn_1 = nn.BatchNorm2d(256) |
| 289 | + self.relu_1 = nn.ReLU(inplace=True) |
| 290 | + self.layers_trans = nn.ModuleList([]) |
| 291 | + is_last=1 |
| 292 | + layer_dim_in=256 |
| 293 | + layer_dim=128 |
| 294 | + p=1 |
| 295 | + num_group=16 |
| 296 | + layer_depth=1 |
| 297 | + ind=0 |
| 298 | + layer_heads=1 |
| 299 | + self.layers_trans.append(nn.ModuleList([ |
| 300 | + GSC(layer_dim_in, layer_dim, p, num_group), |
| 301 | + Transformer(dim=int(layer_dim), depth=layer_depth, heads=layer_heads, |
| 302 | + groupsize=group_spatial_size[ind], dropout=dropout, norm_output=not is_last), |
| 303 | + nn.BatchNorm2d(layer_dim), |
| 304 | + nn.ReLU(inplace=True), |
| 305 | + nn.Conv2d(layer_dim,layer_dim,1), |
| 306 | + |
| 307 | + ])) |
| 308 | + |
| 309 | + self.conv_last = nn.Conv2d(dims[-1], 2 * dims[-1], 3) |
| 310 | + |
| 311 | + self.mlp_head = nn.Sequential( |
| 312 | + Reduce('b d h w -> b d', 'mean'), |
| 313 | + nn.LayerNorm(dims[-1]), |
| 314 | + nn.Linear(dims[-1], num_classes) |
| 315 | + ) |
| 316 | + |
| 317 | + def forward(self, x): |
| 318 | + x = x.squeeze(dim=1) |
| 319 | + x = self.sc(x) |
| 320 | + x = self.bn_1(x) |
| 321 | + x = self.relu_1(x) |
| 322 | + |
| 323 | + for peg, transformer, bn, relu, pw in self.layers_trans: |
| 324 | + x = peg(x) |
| 325 | + y = x |
| 326 | + x = transformer(x) |
| 327 | + x = pw(x) + y |
| 328 | + x = bn(x) |
| 329 | + x = relu(x) |
| 330 | + return self.mlp_head(x) |
| 331 | + |
| 332 | + |
| 333 | +def gscvit(dataset): |
| 334 | + model = None |
| 335 | + if dataset == 'hy': |
| 336 | + model = GSCViT( |
| 337 | + num_classes=32, |
| 338 | + channels=100, |
| 339 | + heads=(1),#(1,1,1) |
| 340 | + depth=(1),#(1,1,1) |
| 341 | + group_spatial_size=[3, 3, 3], |
| 342 | + dropout=0.1, |
| 343 | + padding=[1, 1, 1], |
| 344 | + dims = (256, 128), |
| 345 | + num_groups=[16, 16, 16], |
| 346 | + ) |
| 347 | + return model |
| 348 | + |
| 349 | + |
| 350 | + |
| 351 | +if __name__ == '__main__': |
| 352 | + img = torch.randn(9, 100, 9, 9) |
| 353 | + print("input shape:", img.shape) |
| 354 | + net = gscvit(dataset='hy') |
| 355 | + net.default_cfg = _cfg() |
| 356 | + print("output shape:", net(img).shape) |
| 357 | + |
| 358 | + |
0 commit comments