|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +import random |
| 3 | +import unittest |
| 4 | + |
| 5 | +import axelrod |
| 6 | +from axelrod import MoranProcess |
| 7 | +from axelrod.moran import fitness_proportionate_selection |
| 8 | + |
| 9 | +from hypothesis import given, example, settings |
| 10 | +from hypothesis.strategies import integers, lists, sampled_from, random_module, floats |
| 11 | + |
| 12 | + |
| 13 | +class TestMoranProcess(unittest.TestCase): |
| 14 | + |
| 15 | + def test_fps(self): |
| 16 | + self.assertEqual(fitness_proportionate_selection([0, 0, 1]), 2) |
| 17 | + random.seed(1) |
| 18 | + self.assertEqual(fitness_proportionate_selection([1, 1, 1]), 0) |
| 19 | + self.assertEqual(fitness_proportionate_selection([1, 1, 1]), 2) |
| 20 | + |
| 21 | + def test_stochastic(self): |
| 22 | + p1, p2 = axelrod.Cooperator(), axelrod.Cooperator() |
| 23 | + mp = MoranProcess((p1, p2)) |
| 24 | + self.assertFalse(mp._stochastic) |
| 25 | + p1, p2 = axelrod.Cooperator(), axelrod.Cooperator() |
| 26 | + mp = MoranProcess((p1, p2), noise=0.05) |
| 27 | + self.assertTrue(mp._stochastic) |
| 28 | + p1, p2 = axelrod.Cooperator(), axelrod.Random() |
| 29 | + mp = MoranProcess((p1, p2)) |
| 30 | + self.assertTrue(mp._stochastic) |
| 31 | + |
| 32 | + def test_exit_condition(self): |
| 33 | + p1, p2 = axelrod.Cooperator(), axelrod.Cooperator() |
| 34 | + mp = MoranProcess((p1, p2)) |
| 35 | + mp.play() |
| 36 | + self.assertEqual(len(mp), 1) |
| 37 | + |
| 38 | + def test_two_players(self): |
| 39 | + p1, p2 = axelrod.Cooperator(), axelrod.Defector() |
| 40 | + random.seed(5) |
| 41 | + mp = MoranProcess((p1, p2)) |
| 42 | + mp.play() |
| 43 | + self.assertEqual(len(mp), 5) |
| 44 | + self.assertEqual(mp.winning_strategy_name, str(p2)) |
| 45 | + |
| 46 | + def test_three_players(self): |
| 47 | + players = [axelrod.Cooperator(), axelrod.Cooperator(), |
| 48 | + axelrod.Defector()] |
| 49 | + random.seed(5) |
| 50 | + mp = MoranProcess(players) |
| 51 | + mp.play() |
| 52 | + self.assertEqual(len(mp), 7) |
| 53 | + self.assertEqual(mp.winning_strategy_name, str(axelrod.Defector())) |
| 54 | + |
| 55 | + def test_four_players(self): |
| 56 | + players = [axelrod.Cooperator() for _ in range(3)] |
| 57 | + players.append(axelrod.Defector()) |
| 58 | + random.seed(10) |
| 59 | + mp = MoranProcess(players) |
| 60 | + mp.play() |
| 61 | + self.assertEqual(len(mp), 9) |
| 62 | + self.assertEqual(mp.winning_strategy_name, str(axelrod.Defector())) |
| 63 | + |
| 64 | + @given(strategies=lists(sampled_from(axelrod.strategies), |
| 65 | + min_size=2, # Errors are returned if less than 2 strategies |
| 66 | + max_size=5, unique=True), |
| 67 | + rm=random_module()) |
| 68 | + @settings(max_examples=5, timeout=0) # Very low number of examples |
| 69 | + |
| 70 | + # Two specific examples relating to cloning of strategies |
| 71 | + @example(strategies=[axelrod.BackStabber, axelrod.MindReader], |
| 72 | + rm=random.seed(0)) |
| 73 | + @example(strategies=[axelrod.ThueMorse, axelrod.MindReader], |
| 74 | + rm=random.seed(0)) |
| 75 | + def test_property_players(self, strategies, rm): |
| 76 | + """Hypothesis test that randomly checks players""" |
| 77 | + players = [s() for s in strategies] |
| 78 | + mp = MoranProcess(players) |
| 79 | + mp.play() |
| 80 | + self.assertIn(mp.winning_strategy_name, [str(p) for p in players]) |
| 81 | + |
| 82 | + def test_reset(self): |
| 83 | + p1, p2 = axelrod.Cooperator(), axelrod.Defector() |
| 84 | + random.seed(8) |
| 85 | + mp = MoranProcess((p1, p2)) |
| 86 | + mp.play() |
| 87 | + self.assertEqual(len(mp), 4) |
| 88 | + self.assertEqual(len(mp.score_history), 3) |
| 89 | + mp.reset() |
| 90 | + self.assertEqual(len(mp), 1) |
| 91 | + self.assertEqual(mp.winning_strategy_name, None) |
| 92 | + self.assertEqual(mp.score_history, []) |
0 commit comments