-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoriginal_abstractor_module.py
140 lines (120 loc) · 4.87 KB
/
original_abstractor_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""This module contains the implementation of the original Abstractor module."""
import torch
from torch import nn
from attention import Attention
from transformer_blocks import FeedForwardBlock
from symbol_retrieval import PositionalSymbolRetriever, SymbolicAttention
from positional_encoding import SinusoidalPositionalEncoding
class AbstractorModule(nn.Module):
"""An implementation of the original Abstractor module."""
def __init__(self,
n_layers: int,
d_model: int,
n_heads: int,
dff: int,
use_self_attn: bool,
dropout_rate: float,
activation: str,
norm_first: bool,
symbol_retriever_type: str,
symbol_retriever_kwargs: dict,
symbol_add_pos_embedding: bool,
max_len: int,
bias: bool = True):
super(AbstractorModule, self).__init__()
self.n_layers = n_layers
self.d_model = d_model
self.n_heads = n_heads
self.dff = dff
self.dropout_rate = dropout_rate
self.activation = activation
self.norm_first = norm_first
self.symbol_retriever_type = symbol_retriever_type
self.symbol_add_pos_embedding = symbol_add_pos_embedding
self.max_len = max_len
self.bias = bias
if self.symbol_retriever_type == 'positional':
self.symbol_retriever = PositionalSymbolRetriever(**symbol_retriever_kwargs)
elif self.symbol_retriever_type == 'symbolic_attention':
self.symbol_retriever = SymbolicAttention(**symbol_retriever_kwargs)
else:
raise ValueError("invalid symbol_retriever_type.")
self.abstractor_layers = nn.ModuleList([
AbstractorModuleLayer(
d_model=d_model, n_heads=n_heads, dff=dff, dropout_rate=dropout_rate,
activation=activation, norm_first=norm_first, use_self_attn=use_self_attn, bias=bias)
for _ in range(n_layers)
])
if self.symbol_add_pos_embedding:
self.add_pos_embedding = SinusoidalPositionalEncoding(
d_model, dropout=dropout_rate, max_len=max_len)
def forward(self, x):
s = self.symbol_retriever(x)
if self.symbol_add_pos_embedding:
s = self.add_pos_embedding(s)
a = s
for abstractor_layer in self.abstractor_layers:
a = abstractor_layer(x, a)
return a
class AbstractorModuleLayer(nn.Module):
def __init__(self,
d_model: int,
n_heads: int,
dff: int,
dropout_rate: float,
activation: str,
norm_first: bool,
use_self_attn: bool = True,
bias: bool = True):
super(AbstractorModuleLayer, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
self.dff = dff
self.dropout_rate = dropout_rate
self.activation = activation
self.norm_first = norm_first
self.use_self_attn = use_self_attn
self.bias = bias
self.rel_attn = Attention(
d_model=self.d_model, n_heads=self.n_heads, dropout=self.dropout_rate, add_bias_out=self.bias, add_bias_kv=False)
if self.use_self_attn:
self.self_attn = Attention(
d_model=self.d_model, n_heads=self.n_heads, dropout=self.dropout_rate, add_bias_out=self.bias, add_bias_kv=False)
self.dropout = nn.Dropout(p=self.dropout_rate)
self.norm1 = nn.LayerNorm(self.d_model)
self.norm2 = nn.LayerNorm(self.d_model)
self.ff_block = FeedForwardBlock(embed_dim=self.d_model, dff=self.dff, activation=self.activation, use_bias=self.bias)
def forward(self, x, s):
if self.use_self_attn:
s = self._apply_self_attn(s)
a = self._apply_rel_attn(x, s)
a = self._apply_ff_block(a)
return a
def _apply_rel_attn(self, x, s):
if self.norm_first:
x_ = self.norm1(x)
x = x + self.rel_attn(query=x_, key=x_, value=s, need_weights=False)[0]
else:
x = self.norm1(x + self.rel_attn(query=x, key=x, value=s, need_weights=False)[0])
x = self.dropout(x)
return x
def _apply_self_attn(self, x):
if self.norm_first:
x_ = self.norm1(x)
x = x + self.self_attn(query=x_, key=x_, value=x_, need_weights=False)[0]
else:
x = self.norm1(x + self.self_attn(query=x, key=x, value=x, need_weights=False)[0])
x = self.dropout(x)
return x
def _apply_ff_block(self, x):
if self.norm_first:
x_ = self.norm2(x)
ff_out = self.ff_block(x_)
ff_out = self.dropout(ff_out)
x = x + ff_out
else:
x_ = x
ff_out = self.ff_block(x_)
ff_out = self.dropout(ff_out)
x = self.norm2(x + ff_out)
return x