-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANN form scratch.cpp
441 lines (346 loc) · 10.2 KB
/
ANN form scratch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#include <iostream>
#include <math.h>
using namespace std;
double rand_seed = time(0);
class Matrix
{
private:
double *temp;
public:
double *mat;
int row , col;
// empty constructor
Matrix(){};
// constructor initializer
void init(int m, int n, int initializer=0, bool isRandom=false)
{
mat = new double[m*n];
row = m;
col = n;
if(isRandom == false)
{
for (int i = 0; i < m * n; i++)
{
*(mat + i) = initializer;
}
}
else
{
srand(rand_seed);
for (int i = 0; i < m * n; i++)
{
*(mat + i) = rand()/double(RAND_MAX);
}
}
}
// initilizes if argument is pass with initilzing
Matrix(int m, int n, int initializer=0, bool isRandom=false)
{
init(m, n, initializer, isRandom);
}
Matrix operator * (const Matrix &mat2)
{
int m = this->row, n = this->col, o = mat2.col;
// initializing final matrix
Matrix ans(m,o);
temp = new double[this->row*mat2.col];
for(int i=0; i<m*o; i++)
{
*(temp + i) = 0;
}
//matrice multiplication
for(int i=0; i<m; i++)
{
for(int j=0; j<n; j++)
{
for(int k=0; k<o; k++)
{
*(temp + i*o + k) = *(this->mat + i*n + j) * *(mat2.mat + j*o + k) + *(temp + i*o + k);
}
}
}
ans.mat = temp;
return ans;
}
Matrix operator + (const Matrix &mat2)
{
int m = this->row, n = this->col, o = mat2.col;
Matrix ans(m,n);
temp = new double[m*n];
for(int i=0; i<m*n; i++)
{
*(temp + i) = *(this->mat + 1) + *(mat2.mat + i);
}
ans.mat = temp;
return ans;
}
void printMatrix()
{
for(int i=0; i<row; i++)
{
for(int j=0; j<col; j++)
{
cout << *(mat + i*col + j) << "\t";
}
cout << endl;
}
}
Matrix transform()
{
Matrix trans(col, row);
for(int i=0; i<row; i++)
{
for(int j=0; j<col; j++)
{
*(trans.mat + j*row + i) = *(mat + i*col + j);
}
}
return trans;
}
Matrix* multiply(Matrix mat1, Matrix mat2)
{
for(int i=0; i<row*col; i++)
{
*(mat + i) = *(mat1.mat + i) * *(mat2.mat + i);
}
return this;
}
Matrix getRow(int r)
{
Matrix rowM(col, 1);
for(int i=0; i<col; i++)
{
*(rowM.mat + i) = *(mat + r*col + i);
}
return rowM;
}
};
class Layer{
public:
Matrix input;
Matrix output;
Layer()
{
}
};
class Dense : private Layer
{
private:
Matrix weigths;
Matrix biases;
Matrix input;
Matrix output;
public:
Dense(int input_size, int output_size)
{
weigths.init(output_size, input_size, 0, true);
biases.init(output_size, 1, 0, true);
output.init(output_size, 1, 0, false);
}
Matrix forward(Matrix inp)
{
input = inp;
output = (weigths * input) + biases;
return output;
}
Matrix backward(Matrix output_gradient, double lr=0.01)
{
Matrix weight_gradient = output_gradient * input.transform();
Matrix input_gradient = weigths.transform() * output_gradient;
for(int i=0; i<weigths.row*weigths.col; i++)
{
*(weigths.mat + i) -= lr * *(weight_gradient.mat + i);
}
for(int i=0; i<biases.row*biases.col; i++)
{
*(biases.mat + i) -= lr * *(output_gradient.mat + i);
}
return input_gradient;
}
};
class Activation : private Layer
{
public:
Matrix *activation(Matrix);
Matrix *activation_prime(Matrix);
Matrix TanH(Matrix mat1)
{
Matrix mat2(mat1.row, mat1.col);
for(int i=0; i<mat1.row*mat1.col; i++)
{
*(mat2.mat + i) = tanh(*(mat1.mat + i));
}
return mat2;
}
Matrix TanH_Prime(Matrix mat1)
{
Matrix mat2(mat1.row, mat1.col);
for(int i=0; i<mat1.row*mat1.col; i++)
{
*(mat2.mat + i) = 1 - pow(*(mat1.mat + i), 2);
}
return mat2;
}
Matrix forward(Matrix inp)
{
input = inp;
output = TanH(input);
return output;
}
Matrix backward(Matrix output_gradient, double lr=0.01)
{
Matrix out(output_gradient.row, output_gradient.col);
out.multiply(output_gradient, TanH_Prime(input));
return out;
}
};
double mse(Matrix y_true, Matrix y_pred)
{
double mse = 0;
for(int i=0; i<y_true.row*y_true.col; i++)
{
mse += pow(*(y_true.mat + i) - *(y_pred.mat + i), 2);
}
return mse/y_true.row*y_true.col;
}
Matrix mse_prime(Matrix y_true, Matrix y_pred)
{
Matrix op_grad(y_true.row, y_true.col);
for(int i=0; i<y_true.row*y_true.col; i++)
{
*(op_grad.mat + i) += 2 * (*(y_pred.mat + i) - *(y_true.mat + i));
}
*(op_grad.mat) /= y_true.row*y_true.col;
return op_grad;
}
struct model{
Dense dense_obj;
Activation activation_obj;
bool is_only_activation = false;
};
model network[] = {
{Dense(2,3), Activation()},
{Dense(3,1), Activation()}
};
Matrix predict(Matrix input)
{
// size of model
int len_network = sizeof(network)/sizeof(model);
Matrix output = input;
for (int i=0; i<len_network; i++)
{
output = network[i].dense_obj.forward(output);
if(!network[i].is_only_activation)
{
output = network[i].activation_obj.forward(output);
}
}
return output;
}
void fit(Matrix x_train, Matrix y_train, int epochs = 50, double lr=0.01)
{
// size of model
int len_network = sizeof(network)/sizeof(model);
Matrix output;
double error = 0.0, ter;
for(int i=0; i<epochs; i++)
{
error = 0.0;
for(int j=0; j<x_train.row; j++)
{
Matrix input = x_train.getRow(j);
Matrix target = y_train.getRow(j);
// forward pass
output = predict(input);
// cout << "\n========\nBefore forward pass" << endl;
// cout << "input" << endl;
// input.printMatrix();
// cout << "\ntarget" << endl;
// target.printMatrix();
// cout << "\noutput" << endl;
// output.printMatrix();
// error
ter = mse(target, output);
error += ter;
// cout << "\nTemp Error: " << ter << endl;
// backward pass
Matrix grad = mse_prime(target, output);
for(int k=len_network-1; k>=0; k--)
{
if(!network[k].is_only_activation)
{
grad = network[k].activation_obj.backward(grad, lr);
}
grad = network[k].dense_obj.backward(grad, lr);
}
}
// cout << "Epoch: " << i+1 << " Error Before : " << error << endl;
error /= x_train.row;
cout << "Epoch: " << i+1 << " Error: " << error << endl;
}
}
int main() {
cout << "===============Neural Network================" << endl;
cout << "=============================================" << endl;
int trainX_row = 4;
int trainX_col = 2;
int trainY_row = 4;
int trainY_col = 1;
int testX_row = 1;
int testX_col = 2;
int testY_row = 1;
int testY_col = 1;
int epochs = 15;
double lr = 0.1;
// trainig data
double X[trainX_row][trainX_col] = {{0.0, 0.0}, {0.0, 1.0}, {1.0, 0.0}, {1.0, 1.0}};
double Y[trainY_row][trainY_col] = {{0.0},{1.0},{1.0},{0.0}};
// trainig data matrix
Matrix x_train(trainX_row, trainX_col);
Matrix y_train(trainY_row, trainY_col);
for(int i=0; i<trainX_row; i++)
{
for(int j=0; j<trainX_col; j++)
{
*(x_train.mat + i*trainX_col + j) = X[i][j];
}
}
for(int i=0; i<trainY_row; i++)
{
for(int j=0; j<trainY_col; j++)
{
*(y_train.mat + i*trainY_col + j) = Y[i][j];
}
}
// test data
double X_test[testX_row][testX_col] = {{0.0, 0.0}};
double Y_test[testY_row][testY_col] = {{0.0}};
// test data matrix
Matrix x_test(testX_row, testX_col);
for(int i=0; i<testX_row; i++)
{
for(int j=0; j<testX_col; j++)
{
*(x_test.mat + i*testX_col + j) = X_test[i][j];
}
}
Matrix y_test(testY_row, testY_col);
for(int i=0; i<testY_row; i++)
{
for(int j=0; j<testY_col; j++)
{
*(y_test.mat + i*testY_col + j) = Y_test[i][j];
}
}
cout << "===============Traning Started================" << endl;
fit(x_train, y_train, epochs, lr);
cout << "===============Traning Finished================" << endl;
cout << "===============Testing Started================" << endl;
Matrix output = predict(x_test.transform());
cout << "Predicted output: " << endl;
x_test.printMatrix();
output.printMatrix();
cout << "Test Error: " << mse(y_test, output) << endl;
cout << "===============Testing Finished================" << endl;
return 0;
}