-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLR.py
52 lines (39 loc) · 1.38 KB
/
MLR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import numpy as np
import pandas as pd
dataset = pd.read_csv('./data/station_hour.csv')
dataset.dropna(inplace=True)
dataset.drop(["AQI_Bucket", "StationId","Datetime"], axis=1, inplace=True)
class MLEDataset(Dataset):
def __init__(self,data):
self.len = data.shape[0]
self.x = torch.tensor(data.iloc[:, 0:-1].values,dtype=torch.float32)
self.y = torch.tensor(data.iloc[:, [-1]].values,dtype=torch.float32)
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return len(self.y)
dataset = MLEDataset(dataset)
train_loader = DataLoader(dataset=dataset,
batch_size=32,
shuffle=True,
num_workers=2)
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear = nn.Linear(len(list(dataset)),1)
def forward(self,x):
return self.linear(x)
model = Model()
epochs = 10000
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(epochs):
for i,(feature,output) in enumerate(train_loader):
optimizer.zero_grad()
predicted = model(feature)
loss = criterion(output,predicted)
loss.backward()
optimizer.step()