Skip to content

Commit d0308de

Browse files
authored
Merge pull request #2274 from annietllnd/main
Fix skillevels across content
2 parents a8c2dd1 + 21e19ab commit d0308de

File tree

7 files changed

+22
-22
lines changed
  • content/learning-paths

7 files changed

+22
-22
lines changed

content/learning-paths/embedded-and-microcontrollers/training-inference-pytorch/_index.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -7,41 +7,41 @@ cascade:
77

88
minutes_to_complete: 90
99

10-
who_is_this_for: This topic is for machine learning engineers, embedded AI developers, and researchers interested in deploying TinyML models for NLP on Arm-based edge devices using PyTorch and ExecuTorch.
10+
who_is_this_for: This topic is for machine learning engineers, embedded AI developers, and researchers interested in deploying TinyML models for NLP on Arm-based edge devices using PyTorch and ExecuTorch.
1111

12-
learning_objectives:
12+
learning_objectives:
1313
- Train a custom CNN-based sentiment classification model implemented in PyTorch.
1414
- Optimize and convert the model using ExecuTorch for Arm-based edge devices.
1515
- Deploy and run inference on the Corstone-320 FVP.
1616

1717
prerequisites:
18-
- Basic knowledge of machine learning concepts.
19-
- It is advised to complete The Learning Path, [Introduction to TinyML on Arm using PyTorch and ExecuTorch](/learning-paths/embedded-and-microcontrollers/introduction-to-tinyml-on-arm) before starting this learning path.
18+
- Basic knowledge of machine learning concepts.
19+
- It is advised to complete The Learning Path, [Introduction to TinyML on Arm using PyTorch and ExecuTorch](/learning-paths/embedded-and-microcontrollers/introduction-to-tinyml-on-arm) before starting this learning path.
2020
- Familiarity with Python and PyTorch.
2121
- A Linux host machine or VM running Ubuntu 22.04 or higher.
22-
- An Arm license to run the examples on the Corstone-320 Fixed Virtual Platform (FVP), for hands-on deployment.
22+
- An Arm license to run the examples on the Corstone-320 Fixed Virtual Platform (FVP), for hands-on deployment.
2323

2424

2525
author: Dominica Abena O. Amanfo
2626

2727
### Tags
28-
skilllevels: Intermediate
28+
skilllevels: Introductory
2929
subjects: ML
3030
armips:
3131
- Cortex-A
3232
tools_software_languages:
33-
- tinyML
34-
- CNN
33+
- tinyML
34+
- CNN
3535
- PyTorch
3636
- ExecuTorch
37-
37+
3838
operatingsystems:
3939
- Linux
4040

4141

4242
further_reading:
4343
- resource:
44-
title: Run Llama 3 on a Raspberry Pi 5 using ExecuTorch
44+
title: Run Llama 3 on a Raspberry Pi 5 using ExecuTorch
4545
link: /learning-paths/embedded-and-microcontrollers/rpi-llama3
4646
type: website
4747
- resource:

content/learning-paths/embedded-and-microcontrollers/uvprojx-conversion/_index.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ minutes_to_complete: 10
55

66
who_is_this_for: This is a topic for users of µVision who want to migrate to the new project format (csolution) required by CMSIS-Toolbox.
77

8-
learning_objectives:
8+
learning_objectives:
99
- Import, convert, and build uvprojx-based projects in Keil Studio.
1010
- Convert uvprojx-based projects in µVision.
1111
- Convert and build uvprojx-based projects on the command line.
@@ -19,7 +19,7 @@ prerequisites:
1919
author: Christopher Seidl
2020

2121
### Tags
22-
skilllevels: Intermediate
22+
skilllevels: Advanced
2323
subjects: Performance and Architecture
2424
armips:
2525
- Cortex-M
@@ -43,7 +43,7 @@ further_reading:
4343
link: https://community.arm.com/arm-community-blogs/b/internet-of-things-blog/posts/keil-mdk-version-6
4444
type: blog
4545
- resource:
46-
title: keil.arm.com
46+
title: keil.arm.com
4747
link: https://keil.arm.com
4848
type: website
4949

content/learning-paths/laptops-and-desktops/self_hosted_cicd_github/_index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ prerequisites:
1818
author: Dawid Borycki
1919

2020
### Tags
21-
skilllevels: Intermediate
21+
skilllevels: Introductory
2222
subjects: Migration to Arm
2323
armips:
2424
- Cortex-A

content/learning-paths/mobile-graphics-and-gaming/afrc/_index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ minutes_to_complete: 25
55

66
who_is_this_for: Software developers of Android applications and mobile games who are interested in learning how to enable Arm Fixed Rate Compression (AFRC) to improve performance.
77

8-
learning_objectives:
8+
learning_objectives:
99
- Query for fixed-rate compression support.
1010
- Specify what compression to use.
1111
- Verify that compression is applied.
@@ -18,7 +18,7 @@ prerequisites:
1818
author: Jose-Emilio Munoz-Lopez
1919

2020
### Tags
21-
skilllevels: Intermediate
21+
skilllevels: Advanced
2222
subjects: Graphics
2323
armips:
2424
- Mali

content/learning-paths/mobile-graphics-and-gaming/profiling-unity-apps-on-android/_index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ minutes_to_complete: 40
55

66
who_is_this_for: Unity developers wanting to analyze the performance of their apps on Android devices
77

8-
learning_objectives:
8+
learning_objectives:
99
- Deploy to Android
1010
- Profile code running on an Android device
1111
- Analyze performance data
@@ -19,7 +19,7 @@ prerequisites:
1919
author: Arm
2020

2121
### Tags
22-
skilllevels: Intermediate
22+
skilllevels: Introductory
2323
subjects: Performance and Architecture
2424
armips:
2525
- armv8

content/learning-paths/mobile-graphics-and-gaming/ray_tracing/_index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ minutes_to_complete: 120
55

66
who_is_this_for: This Learning Path is for Vulkan developers who are familiar with rendering and are interested in deploying ray tracing in their applications.
77

8-
learning_objectives:
8+
learning_objectives:
99
- Describe how the Vulkan ray tracing API works.
1010
- Describe how to use ray tracing to implement realistic shadows, reflections, and refractions.
1111
- Implement basic ray tracing effects in a Vulkan renderer.
@@ -18,7 +18,7 @@ prerequisites:
1818
author: Iago Calvo Lista
1919

2020
### Tags
21-
skilllevels: Intermediate
21+
skilllevels: Advanced
2222
subjects: Graphics
2323
armips:
2424
- Mali

content/learning-paths/mobile-graphics-and-gaming/using-neon-intrinsics-to-optimize-unity-on-android/_index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ minutes_to_complete: 90
55

66
who_is_this_for: Developers who want to optimize their Unity apps on Android
77

8-
learning_objectives:
8+
learning_objectives:
99
- Use Arm Neon intrinsics in your Unity C# scripts
1010
- Optimize your code
1111
- Collect and compare performance data using the Unity Profiler and Analyzer tools
@@ -19,7 +19,7 @@ prerequisites:
1919
author: Arm
2020

2121
### Tags
22-
skilllevels: Intermediate
22+
skilllevels: Advanced
2323
subjects: Gaming
2424
armips:
2525
- armv8

0 commit comments

Comments
 (0)