forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvarieties.tex
4674 lines (4153 loc) · 177 KB
/
varieties.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Varieties}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we start studying varieties and more generally
schemes over a field. A fundamental reference is \cite{EGA}.
\section{Notation}
\label{section-notation}
\noindent
Throughout this chapter we use the letter $k$ to denote the ground field.
\section{Varieties}
\label{section-varieties}
\noindent
In the stacks project we will use the following as our definition
of a variety.
\begin{definition}
\label{definition-variety}
Let $k$ be a field. A {\it variety} is a scheme $X$ over $k$
such that $X$ is integral and the structure morphism
$X \to \Spec(k)$ is separated and of finite type.
\end{definition}
\noindent
This definition has the following drawback. Suppose that
$k \subset k'$ is an extension of fields. Suppose that $X$
is a variety over $k$. Then the base change
$X_{k'} = X \times_{\Spec(k)} \Spec(k')$ is
not necessarily a variety over $k'$. This phenomenon (in greater
generality) will be discussed in detail in the following sections.
The product of two varieties need not be a variety
(this is really the same phenomenon). Here is an example.
\begin{example}
\label{example-product-not-a-variety}
Let $k = \mathbf{Q}$. Let $X = \Spec(\mathbf{Q}(i))$
and $Y = \Spec(\mathbf{Q}(i))$. Then the product
$X \times_{\Spec(k)} Y$ of the varieties $X$ and $Y$
is not a variety, since it is reducible. (It is isomorphic
to the disjoint union of two copies of $X$.)
\end{example}
\noindent
If the ground field is algebraically closed however, then the
product of varieties is a variety. This follows from the results
in the algebra chapter, but there we treat much more general situations.
There is also a simple direct proof of it which we present here.
\begin{lemma}
\label{lemma-product-varieties}
Let $k$ be an algebraically closed field.
Let $X$, $Y$ be varieties over $k$.
Then $X \times_{\Spec(k)} Y$ is a variety over $k$.
\end{lemma}
\begin{proof}
The morphism $X \times_{\Spec(k)} Y \to \Spec(k)$ is of
finite type and separated because it is the composition of the
morphisms $X \times_{\Spec(k)} Y \to Y \to \Spec(k)$
which are separated and of finite type, see
Morphisms, Lemmas \ref{morphisms-lemma-base-change-finite-type} and
\ref{morphisms-lemma-composition-finite-type}
and
Schemes, Lemma \ref{schemes-lemma-separated-permanence}.
To finish the proof it suffices to show that $X \times_{\Spec(k)} Y$
is integral.
Let $X = \bigcup_{i = 1, \ldots, n} U_i$,
$Y = \bigcup_{j = 1, \ldots, m} V_j$ be finite affine open coverings.
If we can show that each $U_i \times_{\Spec(k)} V_j$ is integral,
then we are done by
Properties, Lemmas \ref{properties-lemma-characterize-reduced},
\ref{properties-lemma-characterize-irreducible}, and
\ref{properties-lemma-characterize-integral}.
This reduces us to the affine case.
\medskip\noindent
The affine case translates into the following algebra statement: Suppose
that $A$, $B$ are integral domains and finitely generated $k$-algebras.
Then $A \otimes_k B$ is an integral domain. To get a contradiction suppose that
$$
(\sum\nolimits_{i = 1, \ldots, n} a_i \otimes b_i)
(\sum\nolimits_{j = 1, \ldots, m} c_j \otimes d_j) = 0
$$
in $A \otimes_k B$ with both factors nonzero in $A \otimes_k B$.
We may assume that $b_1, \ldots, b_n$ are $k$-linearly
independent in $B$, and that $d_1, \ldots, d_m$ are $k$-linearly independent
in $B$. Of course we may also assume that $a_1$ and $c_1$ are nonzero
in $A$. Hence $D(a_1c_1) \subset \Spec(A)$ is nonempty. By the
Hilbert Nullstellensatz
(Algebra, Theorem \ref{algebra-theorem-nullstellensatz})
we can find a maximal ideal $\mathfrak m \subset A$ contained in
$D(a_1c_1)$ and $A/\mathfrak m = k$ as $k$ is algebraically closed.
Denote $\overline{a}_i, \overline{c}_j$ the residue classes of
$a_i, c_j$ in $A/\mathfrak m = k$. Then equation above becomes
$$
(\sum\nolimits_{i = 1, \ldots, n} \overline{a}_i b_i)
(\sum\nolimits_{j = 1, \ldots, m} \overline{c}_j d_j) = 0
$$
which is a contradiction with
$\mathfrak m \in D(a_1c_1)$, the linear independence of
$b_1, \ldots, b_n$ and $d_1, \ldots, d_m$, and the fact that $B$ is a domain.
\end{proof}
\section{Geometrically reduced schemes}
\label{section-geometrically-reduced}
\noindent
If $X$ is a reduced scheme over a field, then it can happen that $X$
becomes nonreduced after extending the ground field. This does not happen
for geometrically reduced schemes.
\begin{definition}
\label{definition-geometrically-reduced}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
Let $x \in X$ be a point.
\begin{enumerate}
\item Let $x \in X$ be a point.
We say $X$ is {\it geometrically reduced at $x$}
if for any field extension $k \subset k'$
and any point $x' \in X_{k'}$ lying over $x$
the local ring $\mathcal{O}_{X_{k'}, x'}$ is reduced.
\item We say $X$ is {\it geometrically reduced} over $k$
if $X$ is geometrically reduced at every point of $X$.
\end{enumerate}
\end{definition}
\noindent
This may seem a little mysterious at first, but it is
really the same thing as the notion discussed in the algebra chapter.
Here are some basic results explaining the connection.
\begin{lemma}
\label{lemma-geometrically-reduced-at-point}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
Let $x \in X$.
The following are equivalent
\begin{enumerate}
\item $X$ is geometrically reduced at $x$, and
\item the ring $\mathcal{O}_{X, x}$ is geometrically
reduced over $k$ (see
Algebra, Definition \ref{algebra-definition-geometrically-reduced}).
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1). This in particular implies that $\mathcal{O}_{X, x}$
is reduced. Let $k \subset k'$ be a finite purely inseparable field
extension. Consider the ring $\mathcal{O}_{X, x} \otimes_k k'$.
By Algebra, Lemma \ref{algebra-lemma-p-ring-map}
its spectrum is the same as the spectrum of $\mathcal{O}_{X, x}$.
Hence it is a local ring also
(Algebra, Lemma \ref{algebra-lemma-characterize-local-ring}).
Therefore there is a unique point $x' \in X_{k'}$ lying over $x$
and $\mathcal{O}_{X_{k'}, x'} \cong \mathcal{O}_{X, x} \otimes_k k'$.
By assumption this is a reduced ring. Hence we deduce (2) by
Algebra, Lemma
\ref{algebra-lemma-geometrically-reduced-finite-purely-inseparable-extension}.
\medskip\noindent
Assume (2). Let $k \subset k'$ be a field extension. Since
$\Spec(k') \to \Spec(k)$ is surjective, also
$X_{k'} \to X$ is surjective
(Morphisms, Lemma \ref{morphisms-lemma-base-change-surjective}).
Let $x' \in X_{k'}$ be any point lying over $x$.
The local ring $\mathcal{O}_{X_{k'}, x'}$
is a localization of the ring $\mathcal{O}_{X, x} \otimes_k k'$.
Hence it is reduced by assumption and (1) is proved.
\end{proof}
\noindent
The notion isn't interesting in characteristic zero.
\begin{lemma}
\label{lemma-perfect-reduced}
Let $X$ be a scheme over a perfect field $k$ (e.g.\ $k$ has
characteristic zero). Let $x \in X$. If $\mathcal{O}_{X, x}$ is
reduced, then $X$ is geometrically reduced at $x$.
If $X$ is reduced, then $X$ is geometrically reduced over $k$.
\end{lemma}
\begin{proof}
The first statement follows from
Lemma \ref{lemma-geometrically-reduced-at-point} and
Algebra, Lemma \ref{algebra-lemma-separable-extension-preserves-reducedness}
and the definition of a perfect field
(Algebra, Definition \ref{algebra-definition-perfect}).
The second statement follows from the first.
\end{proof}
\begin{lemma}
\label{lemma-geometrically-reduced}
Let $k$ be a field of characteristic $p > 0$. Let $X$ be a scheme over $k$.
The following are equivalent
\begin{enumerate}
\item $X$ is geometrically reduced,
\item $X_{k'}$ is reduced for every field extension $k \subset k'$,
\item $X_{k'}$ is reduced for every finite purely inseparable field extension
$k \subset k'$,
\item $X_{k^{1/p}}$ is reduced,
\item $X_{k^{perf}}$ is reduced,
\item $X_{\bar k}$ is reduced,
\item for every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$
is geometrically reduced (see
Algebra, Definition \ref{algebra-definition-geometrically-reduced}).
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1). Then for every field extension $k \subset k'$ and
every point $x' \in X_{k'}$ the local ring of $X_{k'}$ at $x'$
is reduced. In other words $X_{k'}$ is reduced. Hence (2).
\medskip\noindent
Assume (2). Let $U \subset X$ be an affine open. Then for
every field extension $k \subset k'$ the scheme $X_{k'}$ is reduced, hence
$U_{k'} = \Spec(\mathcal{O}(U)\otimes_k k')$ is reduced,
hence $\mathcal{O}(U)\otimes_k k'$ is reduced (see Properties,
Section \ref{properties-section-integral}). In other words
$\mathcal{O}(U)$ is geometrically reduced, so (7) holds.
\medskip\noindent
Assume (7). For any field extension $k \subset k'$ the base
change $X_{k'}$ is gotten by gluing the spectra of the
rings $\mathcal{O}_X(U) \otimes_k k'$ where $U$ is affine open
in $X$ (see Schemes, Section \ref{schemes-section-fibre-products}).
Hence $X_{k'}$ is reduced. So (1) holds.
\medskip\noindent
This proves that (1), (2), and (7) are equivalent. These are equivalent
to (3), (4), (5), and (6) because we can apply Algebra, Lemma
\ref{algebra-lemma-geometrically-reduced-finite-purely-inseparable-extension}
to $\mathcal{O}_X(U)$ for $U \subset X$ affine open.
\end{proof}
\begin{lemma}
\label{lemma-check-only-finite-inseparable-extensions}
Let $k$ be a field of characteristic $p > 0$. Let $X$ be a scheme over $k$.
Let $x \in X$. The following are equivalent
\begin{enumerate}
\item $X$ is geometrically reduced at $x$,
\item $\mathcal{O}_{X_{k'}, x'}$ is reduced for every
finite purely inseparable field extension $k'$ of $k$ and
$x' \in X_{k'}$ the unique point lying over $x$,
\item $\mathcal{O}_{X_{k^{1/p}}, x'}$ is reduced for
$x' \in X_{k'}$ the unique point lying over $x$, and
\item $\mathcal{O}_{X_{k^{perf}}, x'}$ is reduced for
$x' \in X_{k^{perf}}$ the unique point lying over $x$.
\end{enumerate}
\end{lemma}
\begin{proof}
Note that if $k \subset k'$ is purely inseparable, then
$X_{k'} \to X$ induces a homeomorphism on underlying topological
spaces, see Algebra, Lemma \ref{algebra-lemma-p-ring-map}.
Whence the uniqueness of $x'$ lying over $x$ mentioned in the
statement. Moreover, in this case
$\mathcal{O}_{X_{k'}, x'} = \mathcal{O}_{X, x} \otimes_k k'$.
Hence the lemma follows from Lemma \ref{lemma-geometrically-reduced-at-point}
above and Algebra, Lemma
\ref{algebra-lemma-geometrically-reduced-finite-purely-inseparable-extension}.
\end{proof}
\begin{lemma}
\label{lemma-geometrically-reduced-upstairs}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
Let $k'/k$ be a field extension.
Let $x \in X$ be a point, and let $x' \in X_{k'}$ be a point lying over $x$.
The following are equivalent
\begin{enumerate}
\item $X$ is geometrically reduced at $x$,
\item $X_{k'}$ is geometrically reduced at $x'$.
\end{enumerate}
In particular, $X$ is geometrically reduced over $k$ if and only if
$X_{k'}$ is geometrically reduced over $k'$.
\end{lemma}
\begin{proof}
It is clear that (1) implies (2). Assume (2).
Let $k \subset k''$ be a finite purely inseparable field extension
and let $x'' \in X_{k''}$ be a point lying over $x$ (actually it is
unique). We can find a common field extension $k \subset k'''$
(i.e.\ with both $k' \subset k'''$ and $k'' \subset k'''$) and a point
$x''' \in X_{k'''}$ lying over both $x'$ and $x''$.
Consider the map of local rings
$$
\mathcal{O}_{X_{k''}, x''} \longrightarrow \mathcal{O}_{X_{k'''}, x''''}.
$$
This is a flat local ring homomorphism and hence faithfully flat.
By (2) we see that the local ring on the right is reduced.
Thus by Algebra, Lemma \ref{algebra-lemma-descent-reduced}
we conclude that $\mathcal{O}_{X_{k''}, x''}$ is reduced.
Thus by Lemma \ref{lemma-check-only-finite-inseparable-extensions}
we conclude that $X$ is geometrically reduced at $x$.
\end{proof}
\begin{lemma}
\label{lemma-geometrically-reduced-any-base-change}
Let $k$ be a field.
Let $X$, $Y$ be schemes over $k$.
\begin{enumerate}
\item If $X$ is geometrically reduced at $x$, and $Y$ reduced,
then $X \times_k Y$ is reduced at every point lying over $x$.
\item If $X$ geometrically reduced over $k$ and $Y$ reduced.
Then $X \times_k Y$ is reduced.
\end{enumerate}
\end{lemma}
\begin{proof}
Combine, Lemmas \ref{lemma-geometrically-reduced-at-point}
and \ref{lemma-geometrically-reduced} and Algebra,
Lemma \ref{algebra-lemma-geometrically-reduced-any-reduced-base-change}.
\end{proof}
\begin{lemma}
\label{lemma-generic-points-geometrically-reduced}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
\begin{enumerate}
\item If $x' \leadsto x$ is a specialization and $X$ is geometrically
reduced at $x$, then $X$ is geometrically reduced at $x'$.
\item If $x \in X$ such that (a) $\mathcal{O}_{X, x}$
is reduced, and (b) for each specialization $x' \leadsto x$ where
$x'$ is a generic point of an irreducible component of $X$ the
scheme $X$ is geometrically reduced at $x'$, then $X$ is geometrically
reduced at $x$.
\item If $X$ is reduced and geometrically reduced at all generic
points of irreducible components of $X$, then $X$ is geometrically
reduced.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) follows from
Lemma \ref{lemma-geometrically-reduced-at-point}
and the fact that if $A$ is a geometrically reduced
$k$-algebra, then $S^{-1}A$ is a geometrically reduced $k$-algebra for
any multiplicative subset $S$ of $A$, see
Algebra, Lemma \ref{algebra-lemma-geometrically-reduced-permanence}.
\medskip\noindent
Let $A = \mathcal{O}_{X, x}$. The assumptions (a) and (b) of (2) imply
that $A$ is reduced, and that $A_{\mathfrak q}$ is geometrically
reduced over $k$ for every minimal prime $\mathfrak q$ of $A$.
Hence $A$ is geometrically reduced over $k$, see
Algebra, Lemma \ref{algebra-lemma-generic-points-geometrically-reduced}.
Thus $X$ is geometrically reduced at $x$, see
Lemma \ref{lemma-geometrically-reduced-at-point}.
\medskip\noindent
Part (3) follows trivially from part (2).
\end{proof}
\begin{lemma}
\label{lemma-Noetherian-geometrically-reduced-at-point}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
Let $x \in X$.
Assume $X$ locally Noetherian and geometrically reduced at $x$.
Then there exists an open neighbourhood $U \subset X$ of $x$
which is geometrically reduced over $k$.
\end{lemma}
\begin{proof}
Let $R$ be a Noetherian $k$-algebra.
Let $\mathfrak p \subset R$ be a prime.
Let $I = \text{Ker}(R \to R_{\mathfrak p}$.
Since $IR_{\mathfrak p} = R_{\mathfrak p}$ and $I$ is finitely generated
there exists an $f \in R$, $f \not \in \mathfrak p$ such that $fI = 0$.
Hence $R_f \subset R_{\mathfrak p}$.
\medskip\noindent
Assume $X$ locally Noetherian and geometrically reduced at $x$.
If we apply the above to $R = \mathcal{O}_X(U)$ for some affine
open neighbourhood of $x$, and $\mathfrak p \subset R$ the prime
corresponding to $x$, then we see that after shrinking $U$ we may
assume $R \subset R_{\mathfrak p}$. By
Lemma \ref{lemma-geometrically-reduced-at-point} the assumption
means that $R_{\mathfrak p}$ is geometrically reduced over $k$.
By Algebra, Lemma \ref{algebra-lemma-subalgebra-separable}
this implies that $R$ is geometrically reduced over $k$, which
in turn implies that $U$ is geometrically reduced.
\end{proof}
\begin{example}
\label{example-not-geometrically-reduced}
Let $k = \mathbf{F}_p(s, t)$, i.e., a purely transcendental extension
of the prime field. Consider the variety
$X = \Spec(k[x, y]/(1 + sx^p + ty^p))$.
Let $k \subset k'$ be any extension such that
both $s$ and $t$ have a $p$th root in $k'$.
Then the base change $X_{k'}$ is not reduced.
Namely, the ring $k'[x, y]/(1 + s x^p + ty^p)$ contains the element
$1 + s^{1/p}x + t^{1/p}y$ whose $p$th power is zero but
which is not zero (since the ideal $(1 + sx^p + ty^p)$ certainly
does not contain any nonzero element of degree $< p$).
\end{example}
\begin{lemma}
\label{lemma-finite-extension-geometrically-reduced}
Let $k$ be a field.
Let $X \to \Spec(k)$ be locally of finite type.
Assume $X$ has finitely many irreducible components.
Then there exists a finite purely inseparable extension $k \subset k'$
such that $(X_{k'})_{red}$ is geometrically reduced over $k'$.
\end{lemma}
\begin{proof}
To prove this lemma we may replace $X$ by its reduction $X_{red}$.
Hence we may assume that $X$ is reduced and locally of finite type
over $k$.
Let $x_1, \ldots, x_n \in X$ be the generic points of the irreducible
components of $X$.
Note that for every purely inseparable algebraic extension $k \subset k'$
the morphism $(X_{k'})_{red} \to X$ is a homeomorphism, see
Algebra, Lemma \ref{algebra-lemma-p-ring-map}. Hence the points
$x'_1, \ldots, x'_n$ lying over $x_1, \ldots, x_n$ are the generic
points of the irreducible components of $(X_{k'})_{red}$.
As $X$ is reduced the local rings $K_i = \mathcal{O}_{X, x_i}$ are fields, see
Algebra, Lemma \ref{algebra-lemma-minimal-prime-reduced-ring}.
As $X$ is locally of finite type over $k$ the field extensions
$k \subset K_i$ are finitely generated field extensions.
Finally, the local rings $\mathcal{O}_{X_{k'}, x'_i}$ are the
fields $(K_i \otimes_k k')_{red}$. By
Algebra, Lemma \ref{algebra-lemma-make-separable}
we can find a finite purely inseparable extension $k \subset k'$
such that $(K_i \otimes_k k')_{red}$ are separable field
extensions of $k'$. In particular each $(K_i \otimes_k k')_{red}$
is geometrically reduced over $k'$ by
Algebra, Lemma \ref{algebra-lemma-characterize-separable-field-extensions}.
At this point
Lemma \ref{lemma-generic-points-geometrically-reduced} part (3)
implies that $(X_{k'})_{red}$ is geometrically reduced.
\end{proof}
\section{Geometrically connected schemes}
\label{section-geometrically-connected}
\noindent
If $X$ is a connected scheme over a field, then it can happen that $X$
becomes disconnected after extending the ground field. This does not happen
for geometrically connected schemes.
\begin{definition}
\label{definition-geometrically-connected}
Let $X$ be a scheme over the field $k$. We say $X$ is
{\it geometrically connected} over $k$ if the scheme $X_{k'}$ is connected
for every field extension $k'$ of $k$.
\end{definition}
\noindent
By convention a connected topological space is nonempty; hence a fortiori
geometrically connected schemes are nonempty.
Here is an example of a variety which is not geometrically connected.
\begin{example}
\label{example-not-geometrically-irreducible}
Let $k = \mathbf{Q}$. The scheme
$X = \Spec(\mathbf{Q}(i))$ is a variety over $\Spec(\mathbf{Q})$.
But the base change $X_{\mathbf{C}}$ is the spectrum of
$\mathbf{C} \otimes_{\mathbf{Q}} \mathbf{Q}(i) \cong
\mathbf{C} \times \mathbf{C}$ which is the disjoint union of
two copies of $\Spec(\mathbf{C})$. So in fact, this is an
example of a non-geometrically connected variety.
\end{example}
\begin{lemma}
\label{lemma-geometrically-connected-check-after-extension}
Let $X$ be a scheme over the field $k$.
Let $k \subset k'$ be a field extension.
Then $X$ is geometrically connected over $k$ if and only if
$X_{k'}$ is geometrically connected over $k'$.
\end{lemma}
\begin{proof}
If $X$ is geometrically connected over $k$, then it is clear that
$X_{k'}$ is geometrically connected over $k'$. For the converse, note
that for any field extension $k \subset k''$ there exists a common
field extension $k' \subset k'''$ and $k'' \subset k'''$. As the
morphism $X_{k'''} \to X_{k''}$ is surjective (as a base change of
a surjective morphism between spectra of fields) we see that the
connectedness of $X_{k'''}$ implies the connectedness of $X_{k''}$.
Thus if $X_{k'}$ is geometrically connected over $k'$ then
$X$ is geometrically connected over $k$.
\end{proof}
\begin{lemma}
\label{lemma-bijection-connected-components}
Let $k$ be a field.
Let $X$, $Y$ be schemes over $k$.
Assume $X$ is geometrically connected over $k$.
Then the projection morphism
$$
p : X \times_k Y \longrightarrow Y
$$
induces a bijection between connected components.
\end{lemma}
\begin{proof}
The scheme theoretic fibres of $p$ are connected, since they
are base changes of the geometrically connected scheme $X$ by
field extensions. Moreover the scheme theoretic fibres are
homeomorphic to the set theoretic fibres, see
Schemes, Lemma \ref{schemes-lemma-fibre-topological}.
By
Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}
the map $p$ is open.
Thus we may apply Topology,
Lemma \ref{topology-lemma-connected-fibres-connected-components}
to conclude.
\end{proof}
\begin{lemma}
\label{lemma-affine-geometrically-connected}
Let $k$ be a field.
Let $A$ be a $k$-algebra.
Then $X = \Spec(A)$ is geometrically connected over $k$
if and only if $A$ is geometrically connected over $k$ (see
Algebra, Definition \ref{algebra-definition-geometrically-connected}).
\end{lemma}
\begin{proof}
Immediate from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-separably-closed-field-connected-components}
Let $k \subset k'$ be an extension of fields.
Let $X$ be a scheme over $k$.
Assume $k$ separably algebraically closed.
Then the morphism $X_{k'} \to X$ induces a bijection of connected
components. In particular, $X$ is geometrically connected over $k$
if and only if $X$ is connected.
\end{lemma}
\begin{proof}
Since $k$ is separably algebraically closed we see that
$k'$ is geometrically connected over $k$, see
Algebra,
Lemma \ref{algebra-lemma-separably-closed-connected-implies-geometric}.
Hence $Z = \Spec(k')$ is geometrically connected over $k$ by
Lemma \ref{lemma-affine-geometrically-connected}
above. Since $X_{k'} = Z \times_k X$ the result is a special case of
Lemma \ref{lemma-bijection-connected-components}.
\end{proof}
\begin{lemma}
\label{lemma-characterize-geometrically-connected}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
Let $\overline{k}$ be a separable algebraic closure of $k$.
Then $X$ is geometrically connected if and only if the base change
$X_{\overline{k}}$ is connected.
\end{lemma}
\begin{proof}
Assume $X_{\overline{k}}$ is connected.
Let $k \subset k'$ be a field extension.
There exists a field extension $\overline{k} \subset \overline{k}'$
such that $k'$ embeds into $\overline{k}'$ as an extension of $k$.
By Lemma \ref{lemma-separably-closed-field-connected-components}
we see that $X_{\overline{k}'}$ is connected.
Since $X_{\overline{k}'} \to X_{k'}$ is surjective we conclude
that $X_{k'}$ is connected as desired.
\end{proof}
\begin{lemma}
\label{lemma-descend-open}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
Let $A$ be a $k$-algebra.
Let $V \subset X_A$ be a quasi-compact open.
Then there exists a finitely generated $k$-subalgebra $A' \subset A$
and a quasi-compact open $V' \subset X_{A'}$
such that $V = V'_A$.
\end{lemma}
\begin{proof}
We remark that if $X$ is also quasi-separated this follows from
Limits, Lemma \ref{limits-lemma-descend-opens}. Let
$U_1, \ldots, U_n$ be finitely many affine opens of $X$
such that $V \subset \bigcup U_{i, A}$. Say $U_i = \Spec(R_i)$.
Since $V$ is quasi-compact we can find finitely many
$f_{ij} \in R_i \otimes_k A$, $j = 1, \ldots, n_i$
such that $V = \bigcup_i \bigcup_{j = 1, \ldots, n_i} D(f_{ij})$
where $D(f_{ij}) \subset U_{i, A}$ is the corresponding standard
open. (We do not claim that $V \cap U_{i, A}$ is the union
of the $D(f_{ij})$, $j = 1, \ldots, n_i$.)
It is clear that we can find a finitely generated $k$-subalgebra
$A' \subset A$ such that $f_{ij}$ is the image of some
$f_{ij}' \in R_i \otimes_k A'$.
Set $V' = \bigcup D(f_{ij}')$ which is a quasi-compact open of $X_{A'}$.
Denote $\pi : X_A \to X_{A'}$ the canonical morphism.
We have $\pi(V) \subset V'$ as $\pi(D(f_{ij})) \subset D(f_{ij}')$.
If $x \in X_A$ with $\pi(x) \in V'$, then $\pi(x) \in D(f_{ij}')$
for some $i, j$ and we see that $x \in D(f_{ij})$ as $f_{ij}'$
maps to $f_{ij}$. Thus we see that $V = \pi^{-1}(V')$ as desired.
\end{proof}
\noindent
Let $k$ be a field. Let $k \subset \overline{k}$ be a (possibly infinite)
Galois extension. For example $\overline{k}$ could be the
separable algebraic closure of $k$.
For any $\sigma \in \text{Gal}(\overline{k}/k)$ we get a corresponding
automorphism
$
\Spec(\sigma) :
\Spec(\overline{k})
\longrightarrow
\Spec(\overline{k})
$.
Note that
$\Spec(\sigma) \circ \Spec(\tau) = \Spec(\tau \circ \sigma)$.
Hence we get an action
$$
\text{Gal}(\overline{k}/k)^{opp} \times \Spec(\overline{k})
\longrightarrow
\Spec(\overline{k})
$$
of the opposite group on the scheme $\Spec(\overline{k})$.
Let $X$ be a scheme over $k$. Since
$X_{\overline{k}} =
\Spec(\overline{k}) \times_{\Spec(k)} X$
by definition we see that the action above induces a canonical action
\begin{equation}
\label{equation-galois-action-base-change-kbar}
\text{Gal}(\overline{k}/k)^{opp} \times X_{\overline{k}}
\longrightarrow
X_{\overline{k}}.
\end{equation}
\begin{lemma}
\label{lemma-Galois-action-quasi-compact-open}
Let $k$ be a field. Let $X$ be a scheme over $k$.
Let $\overline{k}$ be a (possibly infinite) Galois extension of $k$.
Let $V \subset X_{\overline{k}}$ be a quasi-compact open.
Then
\begin{enumerate}
\item there exists a finite subextension $k \subset k' \subset \overline{k}$
and a quasi-compact open $V' \subset X_{k'}$ such that
$V = (V')_{\overline{k}}$,
\item there exists an open subgroup $H \subset \text{Gal}(\overline{k}/k)$
such that $\sigma(V) = V$ for all $\sigma \in H$.
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-descend-open} there exists a finite subextension
$k \subset k' \subset \overline{k}$ and an open $V' \subset X_{k'}$
which pulls back to $V$. This proves (1). Since $\text{Gal}(\overline{k}/k')$
is open in $\text{Gal}(\overline{k}/k)$ part (2) is clear as well.
\end{proof}
\begin{lemma}
\label{lemma-closed-fixed-by-Galois}
Let $k$ be a field. Let $k \subset \overline{k}$ be a (possibly infinite)
Galois extension. Let $X$ be a scheme over $k$. Let
$\overline{T} \subset X_{\overline{k}}$ have the following properties
\begin{enumerate}
\item $\overline{T}$ is a closed subset of $X_{\overline{k}}$,
\item for every $\sigma \in \text{Gal}(\overline{k}/k)$
we have $\sigma(\overline{T}) = \overline{T}$.
\end{enumerate}
Then there exists a closed subset $T \subset X$ whose inverse image
in $X_{k'}$ is $\overline{T}$.
\end{lemma}
\begin{proof}
This lemma immediately reduces to the case where $X = \Spec(A)$
is affine. In this case, let $\overline{I} \subset A \otimes_k \overline{k}$
be the radical ideal corresponding to $\overline{T}$.
Assumption (2) implies that $\sigma(\overline{I}) = \overline{I}$
for all $\sigma \in \text{Gal}(\overline{k}/k)$.
Pick $x \in \overline{I}$. There exists a finite Galois extension
$k \subset k'$ contained in $\overline{k}$ such that $x \in A \otimes_k k'$.
Set $G = \text{Gal}(k'/k)$. Set
$$
P(T) = \prod\nolimits_{\sigma \in G} (T - \sigma(x)) \in (A \otimes_k k')[T]
$$
It is clear that $P(T)$ is monic and is actually an element of
$(A \otimes_k k')^G[T] = A[T]$ (by basic Galois theory).
Moreover, if we write $P(T) = T^d + a_1T^{d - 1} + \ldots + a_0$
the we see that $a_i \in I := A \cap \overline{I}$. By
Algebra, Lemma \ref{algebra-lemma-polynomials-divide}
we see that $x$ is contained in the radical of $I(A \otimes_k \overline{k})$.
Hence $\overline{I}$ is the radical of $I(A \otimes_k \overline{k})$ and
setting $T = V(I)$ is a solution.
\end{proof}
\begin{lemma}
\label{lemma-characterize-geometrically-disconnected}
Let $k$ be a field.
Let $X$ be a scheme over $k$.
The following are equivalent
\begin{enumerate}
\item $X$ is geometrically connected,
\item for every finite separable field extension $k \subset k'$
the scheme $X_{k'}$ is connected.
\end{enumerate}
\end{lemma}
\begin{proof}
It follows immediately from the definition that (1) implies (2).
Assume that $X$ is not geometrically connected.
Let $k \subset \overline{k}$ be a separable algebraic
closure of $k$. By
Lemma \ref{lemma-characterize-geometrically-connected}
it follows that $X_{\overline{k}}$ is disconnected.
Say $X_{\overline{k}} = \overline{U} \amalg \overline{V}$
with $\overline{U}$ and $\overline{V}$ open, closed, and nonempty.
\medskip\noindent
Suppose that $W \subset X$ is any quasi-compact open.
Then $W_{\overline{k}} \cap \overline{U}$ and
$W_{\overline{k}} \cap \overline{V}$ are open and closed in
$W_{\overline{k}}$. In particular $W_{\overline{k}} \cap \overline{U}$ and
$W_{\overline{k}} \cap \overline{V}$ are quasi-compact, and by
Lemma \ref{lemma-Galois-action-quasi-compact-open}
both $W_{\overline{k}} \cap \overline{U}$ and
$W_{\overline{k}} \cap \overline{V}$
are defined over a finite subextension and invariant under an
open subgroup of $\text{Gal}(\overline{k}/k)$.
We will use this without further mention in the following.
\medskip\noindent
Pick $W_0 \subset X$ quasi-compact open such that both
$W_{0, \overline{k}} \cap \overline{U}$ and
$W_{0, \overline{k}} \cap \overline{V}$ are nonempty.
Choose a finite subextension $k \subset k' \subset \overline{k}$
and a decomposition $W_{0, k'} = U_0' \amalg V_0'$ into open and closed
subsets such that
$W_{0, \overline{k}} \cap \overline{U} = (U'_0)_{\overline{k}}$ and
$W_{0, \overline{k}} \cap \overline{V} = (V'_0)_{\overline{k}}$.
Let $H = \text{Gal}(\overline{k}/k') \subset \text{Gal}(\overline{k}/k)$.
In particular
$\sigma(W_{0, \overline{k}} \cap \overline{U}) =
W_{0, \overline{k}} \cap \overline{U}$ and similarly for
$\overline{V}$.
\medskip\noindent
Having chosen $W_0$, $k'$ as above, for every quasi-compact open
$W \subset X$ we set
$$
U_W =
\bigcap\nolimits_{\sigma \in H} \sigma(W_{\overline{k}} \cap \overline{U}),
\quad
V_W =
\bigcup\nolimits_{\sigma \in H} \sigma(W_{\overline{k}} \cap \overline{V}).
$$
Now, since $W_{\overline{k}} \cap \overline{U}$ and
$W_{\overline{k}} \cap \overline{V}$ are fixed by an open subgroup of
$\text{Gal}(\overline{k}/k)$ we see that the union and intersection
above are finite. Hence $U_W$ and $V_W$ are both open and closed.
Also, by construction $W_{\bar k} = U_W \amalg V_W$.
\medskip\noindent
We claim that if $W \subset W' \subset X$ are quasi-compact
open, then $W_{\overline{k}} \cap U_{W'} = U_W$ and
$W_{\overline{k}} \cap V_{W'} = V_W$. Verification omitted.
Hence we see that upon defining $U = \bigcup_{W \subset X} U_W$
and $V = \bigcup_{W \subset X} V_W$ we obtain
$X_{\overline{k}} = U \amalg V$ is a disjoint union of open
and closed subsets.
It is clear that $V$ is nonempty as it is constructed by taking
unions (locally). On the other hand, $U$ is nonempty since it contains
$W_0 \cap \overline{U}$ by construction. Finally, $U, V \subset X_{\bar k}$
are closed and $H$-invariant by construction. Hence by
Lemma \ref{lemma-closed-fixed-by-Galois}
we have $U = (U')_{\bar k}$, and $V = (V')_{\bar k}$ for some
closed $U', V' \subset X_{k'}$. Clearly $X_{k'} = U' \amalg V'$
and we see that $X_{k'}$ is disconnected as desired.
\end{proof}
\begin{lemma}
\label{lemma-tricky}
Let $k$ be a field. Let $k \subset \overline{k}$ be a (possibly infinite)
Galois extension. Let $f : T \to X$ be a morphism of schemes over $k$.
Assume $T_{\overline{k}}$ connected and $X_{\overline{k}}$
disconnected. Then $X$ is disconnected.
\end{lemma}
\begin{proof}
Write $X_{\overline{k}} = \overline{U} \coprod \overline{V}$
with $\overline{U}$ and $\overline{V}$ open and closed.
Denote $\overline{f} : T_{\overline{k}} \to X_{\overline{k}}$ the base
change of $f$. Since $T_{\overline{k}}$ is connected we see that
$T_{\overline{k}}$ is contained in either $\overline{f}^{-1}(\overline{U})$
or $\overline{f}^{-1}(\overline{V})$.
Say $T_{\overline{k}} \subset \overline{f}^{-1}(\overline{U})$.
\medskip\noindent
Fix a quasi-compact open $W \subset X$. There exists a
finite Galois subextension $k \subset k' \subset \overline{k}$
such that $\overline{U} \cap W_{\overline{k}}$ and
$\overline{V} \cap W_{\overline{k}}$ come from quasi-compact
opens $U', V' \subset W_{k'}$. Then also $W_{k'} = U' \coprod V'$.
Consider
$$
U'' = \bigcap\nolimits_{\sigma \in \text{Gal}(k'/k)} \sigma(U'),
\quad
V'' = \bigcup\nolimits_{\sigma \in \text{Gal}(k'/k)} \sigma(V').
$$
These are Galois invariant, open and closed, and
$W_{k'} = U'' \coprod V''$.
By Lemma \ref{lemma-closed-fixed-by-Galois} we get open and closed subsets
$U_W, V_W \subset W$ such that
$U'' = (U_W)_{k'}$, $V'' = (V_W)_{k'}$ and
$W = U_W \coprod V_W$.
\medskip\noindent
We claim that if $W \subset W' \subset X$ are quasi-compact
open, then $W \cap U_{W'} = U_W$ and $W \cap V_{W'} = V_W$.
Verification omitted.
Hence we see that upon defining $U = \bigcup_{W \subset X} U_W$
and $V = \bigcup_{W \subset X} V_W$ we obtain $X = U \coprod V$.
It is clear that $V$ is nonempty as it is constructed by taking
unions (locally). On the other hand, $U$ is nonempty since it contains
$f(T)$ by construction.
\end{proof}
\begin{lemma}
\label{lemma-geometrically-connected-criterion}
Let $k$ be a field. Let $T \to X$ be a morphism of schemes over $k$.
Assume $T$ is geometrically connected and $X$ connected.
Then $X$ is geometrically connected.
\end{lemma}
\begin{proof}
This is a reformulation of
Lemma \ref{lemma-tricky}.
\end{proof}
\begin{lemma}
\label{lemma-geometrically-connected-if-connected-and-point}
Let $k$ be a field. Let $X$ be a scheme over $k$.
Assume $X$ is connected and has a point $x$ such that
$k$ is algebraically closed in $\kappa(x)$.
Then $X$ is geometrically connected.
In particular, if $X$ has a $k$-rational point and $X$ is connected,
then $X$ is geometrically connected.
\end{lemma}
\begin{proof}
Set $T = \Spec(\kappa(x))$. Let $k \subset \overline{k}$ be a
separable algebraic closure of $k$. The assumption on $k \subset \kappa(x)$
implies that $T_{\overline{k}}$ is irreducible, see
Algebra, Lemma \ref{algebra-lemma-field-extension-geometrically-irreducible}.
Hence by
Lemma \ref{lemma-geometrically-connected-criterion}
we see that $X_{\overline{k}}$ is connected. By
Lemma \ref{lemma-characterize-geometrically-connected}
we conclude that $X$ is geometrically connected.
\end{proof}
\begin{lemma}
\label{lemma-inverse-image-connected-component}
Let $k \subset K$ be an extension of fields.
Let $X$ be a scheme over $k$.
For every connected component $T$ of $X$ the inverse image
$T_K \subset X_K$ is a union of connected components of $X_K$.
\end{lemma}
\begin{proof}
This is a purely topological statement.
Denote $p : X_K \to X$ the projection morphism.
Let $T \subset X$ be a connected component of $X$.
Let $t \in T_K = p^{-1}(T)$. Let $C \subset X_K$ be a connected component
containing $t$. Then $p(C)$ is a connected subset of $X$
which meets $T$, hence $p(C) \subset T$. Hence $C \subset T_K$.
\end{proof}
\begin{lemma}
\label{lemma-image-connected-component-finite-extension}
Let $k \subset K$ be a finite extension of fields and let $X$ be a scheme over
$k$. Denote by $p : X_K \to X$ the projection morphism. For every connected
component $T$ of $X_K$ the image $p(T)$ is a connected component of
$X$.
\end{lemma}
\begin{proof}
The image $p(T)$ is contained in some connected component $X'$ of $X$. Consider
$X'$ as a closed subscheme of $X$ in any way. Then $T$ is also a connected
component of $X'_K = p^{-1}(X')$ and we may therefore assume that $X$ is
connected. The morphism $p$ is open
(Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}),
closed
(Morphisms, Lemma \ref{morphisms-lemma-integral-universally-closed})
and the fibers of $p$ are finite sets
(Morphisms, Lemma \ref{morphisms-lemma-finite-quasi-finite}).
Thus we may apply
Topology, Lemma \ref{topology-lemma-finite-fibre-connected-components}
to conclude.
\end{proof}
\begin{remark}
\label{remark-image-connected-component}
Let $k \subset K$ be an extension of fields.
Let $X$ be a scheme over $k$.
Denote $p : X_K \to X$ the projection morphism.
Let $\overline{T} \subset X_K$ be a connected component.
Is it true that $p(\overline{T})$ is a connected component of $X$?
When $k \subset K$ is finite
Lemma \ref{lemma-image-connected-component-finite-extension}
tells us the answer is ``yes''.
In general we do not know the answer.
If you do, or if you have a reference, please email
\href{mailto:[email protected]}{[email protected]}.
\end{remark}
\noindent
Let $X$ be a scheme. We denote $\pi_0(X)$ the set of connected
components of $X$.
\begin{lemma}
\label{lemma-galois-action-connected-components}
Let $k$ be a field, with separable algebraic closure $\overline{k}$.
Let $X$ be a scheme over $k$.
There is an action
$$
\text{Gal}(\overline{k}/k)^{opp} \times \pi_0(X_{\overline{k}})
\longrightarrow
\pi_0(X_{\overline{k}})
$$
with the following properties:
\begin{enumerate}
\item An element $\overline{T} \in \pi_0(X_{\overline{k}})$
is fixed by the action if and only if there exists a connected component
$T \subset X$, which is geometrically connected over $k$,
such that $T_{\overline{k}} = \overline{T}$.
\item For any field extension $k \subset k'$ with separable
algebraic closure $\overline{k}'$ the diagram
$$
\xymatrix{
\text{Gal}(\overline{k}'/k') \times \pi_0(X_{\overline{k}'})
\ar[r] \ar[d] &
\pi_0(X_{\overline{k}'}) \ar[d] \\
\text{Gal}(\overline{k}/k) \times \pi_0(X_{\overline{k}})
\ar[r] &
\pi_0(X_{\overline{k}})
}
$$
is commutative (where the right vertical arrow is a bijection
according to Lemma \ref{lemma-separably-closed-field-connected-components}).
\end{enumerate}
\end{lemma}
\begin{proof}
The action (\ref{equation-galois-action-base-change-kbar})
of $\text{Gal}(\overline{k}/k)$ on $X_{\overline{k}}$
induces an action on its connected components.
Connected components are always closed
(Topology, Lemma \ref{topology-lemma-connected-components}).