forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstacks-sheaves.tex
4167 lines (3756 loc) · 152 KB
/
stacks-sheaves.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Sheaves on Algebraic Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
There is a myriad of ways to think about sheaves on algebraic stacks.
In this chapter we discuss one approach, which is particularly well
adapted to our foundations for algebraic stacks. Whenever we introduce
a type of sheaves we will indicate the precise relationship with
similar notions in the literature.
The goal of this chapter is to state those results
that are either obviously true or straightforward to prove
and leave more intricate constructions till later.
\medskip\noindent
In fact, it turns out that to develop a fully fledged theory of
constructible \'etale sheaves and/or an adequate discussion of
derived categories of complexes $\mathcal{O}$-modules whose
cohomology sheaves are quasi-coherent takes a significant amount of work, see
\cite{olsson_sheaves}. We will return to this in
Cohomology of Stacks, Section \ref{stacks-cohomology-section-introduction}.
\medskip\noindent
In the literature and in research papers on sheaves on algebraic stacks
the lisse-\'etale site of an algebraic stack often plays a prominent role.
However, it is a problematic beast, because it turns out that a morphism of
algebraic stacks does not induce a morphism of lisse-\'etale topoi. We have
therefore made the design decision to avoid any mention of the lisse-\'etale
site as long as possible. Arguments that traditionally use the lisse-\'etale
site will be replaced by an argument using a {\v C}ech covering
in the site $\mathcal{X}_{smooth}$ defined below.
\medskip\noindent
Some of the notation, conventions and terminology in this chapter is awkward
and may seem backwards to the more experienced reader. This is intentional.
Please see Quot, Section \ref{quot-section-introduction} for an
explanation.
\section{Conventions}
\label{section-conventions}
\noindent
The conventions we use in this chapter are the same as those in the
chapter on algebraic stacks, see
Algebraic Stacks, Section \ref{algebraic-section-conventions}.
For convenience we repeat them here.
\medskip\noindent
We work in a suitable big fppf site $\Sch_{fppf}$ as in
Topologies, Definition \ref{topologies-definition-big-fppf-site}.
So, if not explicitly stated otherwise all schemes will be objects
of $\Sch_{fppf}$. We record what changes if you change the big
fppf site elsewhere (insert future reference here).
\medskip\noindent
We will always work relative to a base $S$ contained in $\Sch_{fppf}$.
And we will then work with the big fppf site $(\Sch/S)_{fppf}$, see
Topologies, Definition \ref{topologies-definition-big-small-fppf}.
The absolute case can be recovered by taking
$S = \Spec(\mathbf{Z})$.
\section{Presheaves}
\label{section-presheaves}
\noindent
In this section we define presheaves on categories fibred in groupoids
over $(\Sch/S)_{fppf}$, but most of the discussion works
for categories over any base category. This section also serves to
introduce the notation we will use later on.
\begin{definition}
\label{definition-presheaves}
Let $p : \mathcal{X} \to (\Sch/S)_{fppf}$ be a category fibred in
groupoids.
\begin{enumerate}
\item A {\it presheaf on $\mathcal{X}$} is a presheaf on the
underlying category of $\mathcal{X}$.
\item A {\it morphism of presheaves on $\mathcal{X}$} is a morphism of
presheaves on the underlying category of $\mathcal{X}$.
\end{enumerate}
We denote $\textit{PSh}(\mathcal{X})$ the category of presheaves on
$\mathcal{X}$.
\end{definition}
\noindent
This defines presheaves of sets. Of course we can also talk about
presheaves of pointed sets, abelian groups, groups, monoids, rings,
modules over a fixed ring, and lie algebras over a fixed field, etc.
The category of {\it abelian presheaves}, i.e., presheaves of abelian
groups, is denoted $\textit{PAb}(\mathcal{X})$.
\medskip\noindent
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Recall that this
means just that $f$ is a functor over $(\Sch/S)_{fppf}$.
The material in
Sites, Section \ref{sites-section-more-functoriality-PSh}
provides us with a pair of adjoint functors\footnote{These functors
will be denoted $f^{-1}$ and $f_*$ after
Lemma \ref{lemma-functoriality-sheaves}
has been proved.}
\begin{equation}
\label{equation-pushforward-pullback}
f^p : \textit{PSh}(\mathcal{Y}) \longrightarrow \textit{PSh}(\mathcal{X})
\quad\text{and}\quad
{}_pf : \textit{PSh}(\mathcal{X}) \longrightarrow \textit{PSh}(\mathcal{Y}).
\end{equation}
The adjointness is
$$
\Mor_{\textit{PSh}(\mathcal{X})}(f^p\mathcal{G}, \mathcal{F})
=
\Mor_{\textit{PSh}(\mathcal{Y})}(\mathcal{G}, {}_pf\mathcal{F})
$$
where $\mathcal{F} \in \Ob(\textit{PSh}(\mathcal{X}))$ and
$\mathcal{G} \in \Ob(\textit{PSh}(\mathcal{Y}))$. We call
$f^p\mathcal{G}$ the {\it pullback} of $\mathcal{G}$. It follows
from the definitions that
$$
f^p\mathcal{G}(x) = \mathcal{G}(f(x))
$$
for any $x \in \Ob(\mathcal{X})$. The presheaf ${}_pf\mathcal{F}$
is called the {\it pushforward} of $\mathcal{F}$. It is described
by the formula
$$
({}_pf\mathcal{F})(y) = \lim_{f(x) \to y} \mathcal{F}(x).
$$
The rest of this section should probably be moved to the chapter
on sites and in any case should be skipped on a first reading.
\begin{lemma}
\label{lemma-1-morphisms-presheaves}
Let $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Y} \to \mathcal{Z}$
be $1$-morphisms of categories fibred in groupoids over
$(\Sch/S)_{fppf}$. Then $(g \circ f)^p = f^p \circ g^p$ and
there is a canonical isomorphism
${}_p(g \circ f) \to {}_pg \circ {}_pf$
compatible with with adjointness of $(f^p, {}_pf)$, $(g^p, {}_pg)$, and
$((g \circ f)^p, {}_p(g \circ f))$.
\end{lemma}
\begin{proof}
Let $\mathcal{H}$ be a presheaf on $\mathcal{Z}$. Then
$(g \circ f)^p\mathcal{H} = f^p (g^p\mathcal{H})$ is given
by the equalities
$$
(g \circ f)^p\mathcal{H}(x) = \mathcal{H}((g \circ f)(x))
= \mathcal{H}(g(f(x))) = f^p (g^p\mathcal{H})(x).
$$
We omit the verification that this is compatible with restriction maps.
\medskip\noindent
Next, we define the transformation ${}_p(g \circ f) \to {}_pg \circ {}_pf$.
Let $\mathcal{F}$ be a presheaf on $\mathcal{X}$.
If $z$ is an object of $\mathcal{Z}$ then we get a
category $\mathcal{J}$ of quadruples
$(x, f(x) \to y, y, g(y) \to z)$ and a category $\mathcal{I}$
of pairs $(x, g(f(x)) \to z)$. There is a canonical functor
$\mathcal{J} \to \mathcal{I}$ sending the object
$(x, \alpha : f(x) \to y, y, \beta : g(y) \to z)$ to
$(x, \beta \circ f(\alpha) : g(f(x)) \to z)$. This gives the arrow in
\begin{align*}
({}_p(g \circ f)\mathcal{F})(z) & =
\lim_{g(f(x)) \to z} \mathcal{F}(x) \\
& = \lim_\mathcal{I} \mathcal{F} \\
& \to \lim_\mathcal{J} \mathcal{F} \\
& = \lim_{g(y) \to z}
\Big(\lim_{f(x) \to y} \mathcal{F}(x)\Big) \\
& =
({}_pg \circ {}_pf\mathcal{F})(x)
\end{align*}
by
Categories, Lemma \ref{categories-lemma-functorial-limit}.
We omit the verification that this is compatible with restriction maps.
An alternative to this direct construction is to define
${}_p(g \circ f) \cong {}_pg \circ {}_pf$
as the unique map compatible with the adjointness properties. This also
has the advantage that one does not need to prove the compatibility.
\medskip\noindent
Compatibility with adjointness of $(f^p, {}_pf)$, $(g^p, {}_pg)$, and
$((g \circ f)^p, {}_p(g \circ f))$ means that given presheaves
$\mathcal{H}$ and $\mathcal{F}$ as above we have a commutative diagram
$$
\xymatrix{
\Mor_{\textit{PSh}(\mathcal{X})}(f^pg^p\mathcal{H}, \mathcal{F})
\ar@{=}[r] \ar@{=}[d] &
\Mor_{\textit{PSh}(\mathcal{Y})}(g^p\mathcal{H}, {}_pf\mathcal{F})
\ar@{=}[r] &
\Mor_{\textit{PSh}(\mathcal{Y})}(\mathcal{H}, {}_pg{}_pf\mathcal{F})
\\
\Mor_{\textit{PSh}(\mathcal{X})}((g \circ f)^p\mathcal{G}, \mathcal{F})
\ar@{=}[rr] & &
\Mor_{\textit{PSh}(\mathcal{Y})}(\mathcal{G}, {}_p(g \circ f)\mathcal{F})
\ar[u]
}
$$
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-2-morphisms-presheaves}
Let $f, g : \mathcal{X} \to \mathcal{Y}$ be $1$-morphisms of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Let $t : f \to g$
be a $2$-morphism of categories fibred in groupoids over
$(\Sch/S)_{fppf}$. Assigned to $t$ there are canonical
isomorphisms of functors
$$
t^p : g^p \longrightarrow f^p
\quad\text{and}\quad
{}_pt : {}_pf \longrightarrow {}_pg
$$
which compatible with adjointness of $(f^p, {}_pf)$ and
$(g^p, {}_pg)$ and with
vertical and horizontal composition of $2$-morphisms.
\end{lemma}
\begin{proof}
Let $\mathcal{G}$ be a presheaf on $\mathcal{Y}$. Then
$t^p : g^p\mathcal{G} \to f^p\mathcal{G}$ is given by the family
of maps
$$
g^p\mathcal{G}(x) = \mathcal{G}(g(x))
\xrightarrow{\mathcal{G}(t_x)}
\mathcal{G}(f(x)) = f^p\mathcal{G}(x)
$$
parametrized by $x \in \Ob(\mathcal{X})$. This makes sense as
$t_x : f(x) \to g(x)$ and $\mathcal{G}$ is a contravariant functor.
We omit the verification that this is compatible with restriction
mappings.
\medskip\noindent
To define the transformation ${}_pt$ for $y \in \Ob(\mathcal{Y})$
define ${}_y^f\mathcal{I}$, resp.\ ${}_y^g\mathcal{I}$ to be the category
of pairs $(x, \psi : f(x) \to y)$, resp.\ $(x, \psi : g(x) \to y)$, see
Sites, Section \ref{sites-section-more-functoriality-PSh}.
Note that $t$ defines a functor
${}_yt : {}_y^g\mathcal{I} \to {}_y^f\mathcal{I}$
given by the rule
$$
(x, g(x) \to y) \longmapsto (x, f(x) \xrightarrow{t_x} g(x) \to y).
$$
Note that for $\mathcal{F}$ a presheaf on $\mathcal{X}$ the composition
of ${}_yt$ with $\mathcal{F} : {}_y^f\mathcal{I}^{opp} \to \textit{Sets}$,
$(x, f(x) \to y) \mapsto \mathcal{F}(x)$ is equal to
$\mathcal{F} : {}_y^g\mathcal{I}^{opp} \to \textit{Sets}$. Hence by
Categories, Lemma \ref{categories-lemma-functorial-limit}
we get for every $y \in \Ob(\mathcal{Y})$ a canonical map
$$
({}_pf\mathcal{F})(y) = \lim_{{}_y^f\mathcal{I}} \mathcal{F}
\longrightarrow
\lim_{{}_y^g\mathcal{I}} \mathcal{F} = ({}_pg\mathcal{F})(y)
$$
We omit the verification that this is compatible with restriction
mappings. An alternative to this direct construction is to define
${}_pt$ as the unique map compatible with the adjointness properties
of the pairs $(f^p, {}_pf)$ and $(g^p, {}_pg)$ (see below). This also
has the advantage that one does not need to prove the compatibility.
\medskip\noindent
Compatibility with adjointness of $(f^p, {}_pf)$ and $(g^p, {}_pg)$ means
that given presheaves $\mathcal{G}$ and $\mathcal{F}$ as above we have
a commutative diagram
$$
\xymatrix{
\Mor_{\textit{PSh}(\mathcal{X})}(f^p\mathcal{G}, \mathcal{F})
\ar@{=}[r] \ar[d]_{- \circ t^p} &
\Mor_{\textit{PSh}(\mathcal{Y})}(\mathcal{G}, {}_pf\mathcal{F})
\ar[d]^{{}_pt \circ -} \\
\Mor_{\textit{PSh}(\mathcal{X})}(g^p\mathcal{G}, \mathcal{F})
\ar@{=}[r] &
\Mor_{\textit{PSh}(\mathcal{Y})}(\mathcal{G}, {}_pg\mathcal{F})
}
$$
Proof omitted. Hint: Work through the proof of
Sites, Lemma \ref{sites-lemma-adjoints-pu}
and observe the compatibility from the explicit description of the
horizontal and vertical maps in the diagram.
\medskip\noindent
We omit the verification that this is compatible with vertical and horizontal
compositions. Hint: The proof of this for $t^p$ is straightforward and
one can conclude that this holds for the ${}_pt$ maps using compatibility
with adjointness.
\end{proof}
\section{Sheaves}
\label{section-sheaves}
\noindent
We first make an observation that is important and trivial
(especially for those readers who do not worry about set theoretical
issues).
\medskip\noindent
Consider a big fppf site $\Sch_{fppf}$ as in
Topologies, Definition \ref{topologies-definition-big-fppf-site}
and denote its underlying category $\Sch_\alpha$.
Besides being the underlying category of a fppf site,
the category $\Sch_\alpha$ can also can serve as the underlying
category for a big Zariski site, a big \'etale site, a big smooth site,
and a big syntomic site, see
Topologies, Remark \ref{topologies-remark-choice-sites}.
We denote these sites $\Sch_{Zar}$, $\Sch_\etale$,
$\Sch_{smooth}$, and $\Sch_{syntomic}$.
In this situation, since we have defined
the big Zariski site $(\Sch/S)_{Zar}$ of $S$,
the big \'etale site $(\Sch/S)_\etale$ of $S$,
the big smooth site $(\Sch/S)_{smooth}$ of $S$,
the big syntomic site $(\Sch/S)_{syntomic}$ of $S$, and
the big fppf site $(\Sch/S)_{fppf}$ of $S$
as the localizations (see
Sites, Section \ref{sites-section-localize})
$\Sch_{Zar}/S$, $\Sch_\etale/S$,
$\Sch_{smooth}/S$, $\Sch_{syntomic}/S$, and
$\Sch_{fppf}/S$
of these (absolute) big sites we see that all of these have the
same underlying category, namely $\Sch_\alpha/S$.
\medskip\noindent
It follows that if we have a category
$p : \mathcal{X} \to (\Sch/S)_{fppf}$ fibred in groupoids, then
$\mathcal{X}$ inherits a Zariski, \'etale, smooth, syntomic, and
fppf topology, see
Stacks, Definition \ref{stacks-definition-topology-inherited}.
\begin{definition}
\label{definition-inherited-topologies}
Let $\mathcal{X}$ be a category fibred in groupoids over
$(\Sch/S)_{fppf}$.
\begin{enumerate}
\item The {\it associated Zariski site}, denoted $\mathcal{X}_{Zar}$,
is the structure of site on $\mathcal{X}$ inherited from
$(\Sch/S)_{Zar}$.
\item The {\it associated \'etale site}, denoted $\mathcal{X}_\etale$,
is the structure of site on $\mathcal{X}$ inherited from
$(\Sch/S)_\etale$.
\item The {\it associated smooth site}, denoted $\mathcal{X}_{smooth}$,
is the structure of site on $\mathcal{X}$ inherited from
$(\Sch/S)_{smooth}$.
\item The {\it associated syntomic site}, denoted $\mathcal{X}_{syntomic}$,
is the structure of site on $\mathcal{X}$ inherited from
$(\Sch/S)_{syntomic}$.
\item The {\it associated fppf site}, denoted $\mathcal{X}_{fppf}$,
is the structure of site on $\mathcal{X}$ inherited from
$(\Sch/S)_{fppf}$.
\end{enumerate}
\end{definition}
\noindent
This definition makes sense by the discussion above. If $\mathcal{X}$
is an algebraic stack, the literature calls $\mathcal{X}_{fppf}$ (or a
site equivalent to it) the {\it big fppf site} of $\mathcal{X}$ and similarly
for the other ones. We may occasionally use this terminology to
distinguish this construction from others.
\begin{remark}
\label{remark-ambiguity}
We only use this notation when the symbol $\mathcal{X}$ refers to a
category fibred in groupoids, and not a scheme, an algebraic space, etc.
In this way we will avoid confusion with the small \'etale site of a
scheme, or algebraic space which is denoted $X_\etale$ (in which
case we use a roman capital instead of a calligraphic one).
\end{remark}
\noindent
Now that we have these topologies defined we can say what it means
to have a sheaf on $\mathcal{X}$, i.e., define the corresponding topoi.
\begin{definition}
\label{definition-sheaves}
Let $\mathcal{X}$ be a category fibred in groupoids over
$(\Sch/S)_{fppf}$. Let $\mathcal{F}$ be a presheaf on $\mathcal{X}$.
\begin{enumerate}
\item We say $\mathcal{F}$ is a {\it Zariski sheaf}, or a
{\it sheaf for the Zariski topology} if $\mathcal{F}$
is a sheaf on the associated Zariski site $\mathcal{X}_{Zar}$.
\item We say $\mathcal{F}$ is an {\it \'etale sheaf}, or a
{\it sheaf for the \'etale topology} if $\mathcal{F}$
is a sheaf on the associated \'etale site $\mathcal{X}_\etale$.
\item We say $\mathcal{F}$ is a {\it smooth sheaf}, or a
{\it sheaf for the smooth topology} if $\mathcal{F}$
is a sheaf on the associated smooth site $\mathcal{X}_{smooth}$.
\item We say $\mathcal{F}$ is a {\it syntomic sheaf}, or a
{\it sheaf for the syntomic topology} if $\mathcal{F}$
is a sheaf on the associated syntomic site $\mathcal{X}_{syntomic}$.
\item We say $\mathcal{F}$ is an {\it fppf sheaf}, or a {\it sheaf},
or a {\it sheaf for the fppf topology} if $\mathcal{F}$
is a sheaf on the associated fppf site $\mathcal{X}_{fppf}$.
\end{enumerate}
A morphism of sheaves is just a morphism of presheaves. We denote
these categories of sheaves
$\Sh(\mathcal{X}_{Zar})$,
$\Sh(\mathcal{X}_\etale)$,
$\Sh(\mathcal{X}_{smooth})$,
$\Sh(\mathcal{X}_{syntomic})$, and
$\Sh(\mathcal{X}_{fppf})$.
\end{definition}
\noindent
Of course we can also talk about sheaves of pointed sets, abelian groups,
groups, monoids, rings, modules over a fixed ring, and lie algebras over
a fixed field, etc. The category of {\it abelian sheaves}, i.e., sheaves
of abelian groups, is denoted $\textit{Ab}(\mathcal{X}_{fppf})$
and similarly for the other topologies. If $\mathcal{X}$ is an algebraic
stack, then $\Sh(\mathcal{X}_{fppf})$ is equivalent (modulo
set theoretical problems) to what in the literature would be termed
the {\it category of sheaves on the big fppf site of $\mathcal{X}$}. Similar
for other topologies. We may occasionally use this terminology to
distinguish this construction from others.
\medskip\noindent
Since the topologies are listed in increasing order of strength we have
the following strictly full inclusions
$$
\Sh(\mathcal{X}_{fppf}) \subset
\Sh(\mathcal{X}_{syntomic}) \subset
\Sh(\mathcal{X}_{smooth}) \subset
\Sh(\mathcal{X}_\etale) \subset
\Sh(\mathcal{X}_{Zar}) \subset \textit{PSh}(\mathcal{X})
$$
We sometimes write
$\Sh(\mathcal{X}_{fppf}) = \Sh(\mathcal{X})$
and
$\textit{Ab}(\mathcal{X}_{fppf}) = \textit{Ab}(\mathcal{X})$
in accordance with our terminology that a sheaf on $\mathcal{X}$
is an fppf sheaf on $\mathcal{X}$.
\medskip\noindent
With this setup functoriality of these topoi is straightforward, and
moreover, is compatible with the inclusion functors above.
\begin{lemma}
\label{lemma-functoriality-sheaves}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Let
$\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$.
The functors ${}_pf$ and $f^p$ of (\ref{equation-pushforward-pullback})
transform $\tau$ sheaves into $\tau$ sheaves and define a morphism
of topoi
$f : \Sh(\mathcal{X}_\tau) \to \Sh(\mathcal{Y}_\tau)$.
\end{lemma}
\begin{proof}
This follows immediately from
Stacks, Lemma \ref{stacks-lemma-topology-inherited-functorial}.
\end{proof}
\noindent
In other words, pushforward and pullback of presheaves as defined in
Section \ref{section-presheaves}
also produces {\it pushforward} and {\it pullback} of $\tau$-sheaves.
Having said all of the above we see that we can write $f^p = f^{-1}$
and ${}_pf = f_*$ without any possibility of confusion.
\begin{definition}
\label{definition-morphism}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. We denote
$$
f = (f^{-1}, f_*) :
\Sh(\mathcal{X}_{fppf})
\longrightarrow
\Sh(\mathcal{Y}_{fppf})
$$
the {\it associated morphism of fppf topoi} constructed above.
Similarly for the associated Zariski, \'etale, smooth, and syntomic topoi.
\end{definition}
\noindent
As discussed in
Sites, Section \ref{sites-section-sheaves-algebraic-structures}
the same formula (on the underlying sheaf of sets) defines
pushforward and pullback for sheaves (for one of our topologies)
of pointed sets, abelian groups, groups, monoids, rings, modules
over a fixed ring, and lie algebras over a fixed field, etc.
\section{Computing pushforward}
\label{section-pushforward}
\noindent
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Let $\mathcal{F}$
be a presheaf on $\mathcal{X}$. Let $y \in \Ob(\mathcal{Y})$.
We can compute $f_*\mathcal{F}(y)$ in the following way. Suppose that
$y$ lies over the scheme $V$ and using the $2$-Yoneda lemma think
of $y$ as a $1$-morphism. Consider the projection
$$
\text{pr} :
(\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}
\longrightarrow
\mathcal{X}
$$
Then we have a canonical identification
\begin{equation}
\label{equation-pushforward}
f_*\mathcal{F}(y) = \Gamma\Big(
(\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X},
\ \text{pr}^{-1}\mathcal{F}\Big)
\end{equation}
Namely, objects of the $2$-fibre product are triples
$(h : U \to V, x, f(x) \to h^*y)$. Dropping the $h$ from the
notation we see that this is equivalent to the data of an object
$x$ of $\mathcal{X}$ and a morphism $\alpha : f(x) \to y$ of $\mathcal{Y}$.
Since $f_*\mathcal{F}(y) = \lim_{f(x) \to y} \mathcal{F}(x)$ by definition
the equality follows.
\medskip\noindent
As a consequence we have the following ``base change'' result for
pushforwards. This result is trivial and hinges on the fact that
we are using ``big'' sites.
\begin{lemma}
\label{lemma-base-change}
Let $S$ be a scheme. Let
$$
\xymatrix{
\mathcal{Y}' \times_\mathcal{Y} \mathcal{X} \ar[r]_{g'} \ar[d]_{f'} &
\mathcal{X} \ar[d]^f \\
\mathcal{Y}' \ar[r]^g & \mathcal{Y}
}
$$
be a $2$-cartesian diagram of categories fibred in groupoids over $S$.
Then we have a canonical isomorphism
$$
g^{-1}f_*\mathcal{F} \longrightarrow f'_*(g')^{-1}\mathcal{F}
$$
functorial in the presheaf $\mathcal{F}$ on $\mathcal{X}$.
\end{lemma}
\begin{proof}
Given an object $y'$ of $\mathcal{Y}'$ over $V$
there is an equivalence
$$
(\Sch/V)_{fppf} \times_{g(y'), \mathcal{Y}} \mathcal{X}
=
(\Sch/V)_{fppf} \times_{y', \mathcal{Y}'}
(\mathcal{Y}' \times_\mathcal{Y} \mathcal{X})
$$
Hence by (\ref{equation-pushforward}) a bijection
$g^{-1}f_*\mathcal{F}(y') \to f'_*(g')^{-1}\mathcal{F}(y')$.
We omit the verification that this is compatible with restriction
mappings.
\end{proof}
\noindent
In the case of a representable morphism of categories fibred in groupoids
this formula (\ref{equation-pushforward}) simplifies. We suggest the
reader skip the rest of this section.
\begin{lemma}
\label{lemma-representable}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. The following are
equivalent
\begin{enumerate}
\item $f$ is representable, and
\item for every $y \in \Ob(\mathcal{Y})$ the functor
$\mathcal{X}^{opp} \to \textit{Sets}$,
$x \mapsto \Mor_\mathcal{Y}(f(x), y)$
is representable.
\end{enumerate}
\end{lemma}
\begin{proof}
According to the discussion in
Algebraic Stacks, Section \ref{algebraic-section-representable-morphism}
we see that $f$ is representable if and only if
for every $y \in \Ob(\mathcal{Y})$
lying over $U$ the $2$-fibre product
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$
is representable, i.e., of the form $(\Sch/V_y)_{fppf}$ for some
scheme $V_y$ over $U$. Objects in this $2$-fibre products are triples
$(h : V \to U, x, \alpha : f(x) \to h^*y)$ where $\alpha$ lies
over $\text{id}_V$. Dropping the $h$ from the notation we see that this
is equivalent to the data of an object $x$ of $\mathcal{X}$ and a
morphism $f(x) \to y$. Hence the $2$-fibre product is
representable by $V_y$ and $f(x_y) \to y$ where $x_y$ is an object
of $\mathcal{X}$ over $V_y$ if and only if the functor in (2) is representable
by $x_y$ with universal object a map $f(x_y) \to y$.
\end{proof}
\noindent
Let
$$
\xymatrix{
\mathcal{X} \ar[rr]_f \ar[rd]_p & & \mathcal{Y} \ar[ld]^q \\
& (\Sch/S)_{fppf}
}
$$
be a $1$-morphism of categories fibred in groupoids. Assume $f$ is
representable. For every $y \in \Ob(\mathcal{Y})$ we choose
an object $u(y) \in \Ob(\mathcal{X})$ representing the functor
$x \mapsto \Mor_\mathcal{Y}(f(x), y)$ of
Lemma \ref{lemma-representable}
(this is possible by the axiom of choice).
The objects come with canonical morphisms $f(u(y)) \to y$ by
construction.
For every morphism $\beta : y' \to y$ in $\mathcal{Y}$ we obtain a unique
morphism $u(\beta) : u(y') \to u(y)$ in $\mathcal{X}$ such that the diagram
$$
\xymatrix{
f(u(y')) \ar[d] \ar[rr]_{f(u(\beta))} & & f(u(y)) \ar[d] \\
y' \ar[rr] & & y
}
$$
commutes. In other words, $u : \mathcal{Y} \to \mathcal{X}$ is a functor.
In fact, we can say a little bit more. Namely, suppose that
$V' = q(y')$, $V = q(y)$, $U' = p(u(y'))$ and $U = p(u(y))$. Then
$$
\xymatrix{
U' \ar[rr]_{p(u(\beta))} \ar[d] & & U \ar[d] \\
V' \ar[rr]^{q(\beta)} & & V
}
$$
is a fibre product square. This is true because $U' \to U$ represents
the base change
$(\Sch/V')_{fppf} \times_{y', \mathcal{Y}} \mathcal{X} \to
(\Sch/V)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$
of $V' \to V$.
\begin{lemma}
\label{lemma-representable-pushforward}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a representable $1$-morphism of
categories fibred in groupoids over $(\Sch/S)_{fppf}$. Let
$\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$.
Then the functor $u : \mathcal{Y}_\tau \to \mathcal{X}_\tau$ is continuous
and defines a morphism of sites $\mathcal{X}_\tau \to \mathcal{Y}_\tau$
which induces the same morphism of topoi
$\Sh(\mathcal{X}_\tau) \to \Sh(\mathcal{Y}_\tau)$
as the morphism $f$ constructed in
Lemma \ref{lemma-functoriality-sheaves}.
Moreover, $f_*\mathcal{F}(y) = \mathcal{F}(u(y))$ for any presheaf
$\mathcal{F}$ on $\mathcal{X}$.
\end{lemma}
\begin{proof}
Let $\{y_i \to y\}$ be a $\tau$-covering in $\mathcal{Y}$. By definition
this simply means that $\{q(y_i) \to q(y)\}$ is a $\tau$-covering of
schemes. By the final remark above the lemma we see that
$\{p(u(y_i)) \to p(u(y))\}$ is the base change of the $\tau$-covering
$\{q(y_i) \to q(y)\}$ by $p(u(y)) \to q(y)$, hence is itself a
$\tau$-covering by the axioms of a site. Hence $\{u(y_i) \to u(y)\}$
is a $\tau$-covering of $\mathcal{X}$. This proves that $u$ is
continuous.
\medskip\noindent
Let's use the notation $u_p, u_s, u^p, u^s$ of
Sites, Sections \ref{sites-section-functoriality-PSh} and
\ref{sites-section-continuous-functors}.
If we can show the final assertion of the lemma, then we see that
$f_* = u^p = u^s$ (by continuity of $u$ seen above) and hence by adjointness
$f^{-1} = u_s$ which will prove $u_s$ is exact, hence that $u$ determines
a morphism of sites, and the equality will be clear as well.
To see that $f_*\mathcal{F}(y) = \mathcal{F}(u(y))$ note that by
definition
$$
f_*\mathcal{F}(y) = ({}_pf\mathcal{F})(y) =
\lim_{f(x) \to y} \mathcal{F}(x).
$$
Since $u(y)$ is a final object in the category the limit is taken
over we conclude.
\end{proof}
\section{The structure sheaf}
\label{section-structure-sheaf}
\noindent
Let $\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$.
Let $p : \mathcal{X} \to (\Sch/S)_{fppf}$ be a category
fibred in groupoids. The 2-category of categories fibred in groupoids over
$(\Sch/S)_{fppf}$ has a final object, namely,
$\text{id} : (\Sch/S)_{fppf} \to (\Sch/S)_{fppf}$
and $p$ is a $1$-morphism from $\mathcal{X}$ to this final object.
Hence any presheaf $\mathcal{G}$ on $(\Sch/S)_{fppf}$ gives a
presheaf $p^{-1}\mathcal{G}$ on $\mathcal{X}$ defined by the rule
$p^{-1}\mathcal{G}(x) = \mathcal{G}(p(x))$. Moreover, the discussion in
Section \ref{section-sheaves}
shows that $p^{-1}\mathcal{G}$ is a $\tau$ sheaf whenever
$\mathcal{G}$ is a $\tau$-sheaf.
\medskip\noindent
Recall that the site $(\Sch/S)_{fppf}$ is a ringed site
with structure sheaf $\mathcal{O}$ defined by the rule
$$
(\Sch/S)^{opp} \longrightarrow \textit{Rings},
\quad
U/S \longmapsto \Gamma(U, \mathcal{O}_U)
$$
see
Descent, Definition \ref{descent-definition-structure-sheaf}.
\begin{definition}
\label{definition-structure-sheaf}
Let $p : \mathcal{X} \to (\Sch/S)_{fppf}$ be a category
fibred in groupoids. The
{\it structure sheaf of $\mathcal{X}$} is the sheaf of rings
$\mathcal{O}_\mathcal{X} = p^{-1}\mathcal{O}$.
\end{definition}
\noindent
For an object $x$ of $\mathcal{X}$ lying over $U$ we have
$\mathcal{O}_\mathcal{X}(x) = \mathcal{O}(U) = \Gamma(U, \mathcal{O}_U)$.
Needless to say $\mathcal{O}_\mathcal{X}$ is also a Zariski, \'etale,
smooth, and syntomic sheaf, and hence each of the sites
$\mathcal{X}_{Zar}$, $\mathcal{X}_\etale$, $\mathcal{X}_{smooth}$,
$\mathcal{X}_{syntomic}$, and $\mathcal{X}_{fppf}$ is a ringed site.
This construction is functorial as well.
\begin{lemma}
\label{lemma-functoriality-structure-sheaf}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories
fibred in groupoids over $(\Sch/S)_{fppf}$. Let
$\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$.
There is a canonical identification
$f^{-1}\mathcal{O}_\mathcal{X} = \mathcal{O}_\mathcal{Y}$
which turns
$f : \Sh(\mathcal{X}_\tau) \to \Sh(\mathcal{Y}_\tau)$
into a morphism of ringed topoi.
\end{lemma}
\begin{proof}
Denote $p : \mathcal{X} \to (\Sch/S)_{fppf}$ and
$q : \mathcal{Y} \to (\Sch/S)_{fppf}$ the structural functors.
Then $q = p \circ f$, hence $q^{-1} = f^{-1} \circ p^{-1}$ by
Lemma \ref{lemma-1-morphisms-presheaves}.
The result follows.
\end{proof}
\begin{remark}
\label{remark-flat}
In the situation of
Lemma \ref{lemma-functoriality-structure-sheaf}
the morphism of ringed topoi
$f : \Sh(\mathcal{X}_\tau) \to \Sh(\mathcal{Y}_\tau)$
is flat as is clear from the equality
$f^{-1}\mathcal{O}_\mathcal{X} = \mathcal{O}_\mathcal{Y}$.
This is a bit counter intuitive, for example because a closed
immersion of algebraic stacks is typically not flat (as a morphism of
algebraic stacks).
However, exactly the same thing happens when taking a closed
immersion $i : X \to Y$ of schemes: in this case the associated
morphism of big $\tau$-sites
$i : (\Sch/X)_\tau \to (\Sch/Y)_\tau$
also is flat.
\end{remark}
\section{Sheaves of modules}
\label{section-modules}
\noindent
Since we have a structure sheaf we have modules.
\begin{definition}
\label{definition-modules}
Let $\mathcal{X}$ be a category fibred in groupoids over
$(\Sch/S)_{fppf}$.
\begin{enumerate}
\item A {\it presheaf of modules on $\mathcal{X}$} is a
presheaf of $\mathcal{O}_\mathcal{X}$-modules. The category of
presheaves of modules is denoted $\textit{PMod}(\mathcal{O}_\mathcal{X})$.
\item We say a presheaf of modules $\mathcal{F}$ is an
{\it $\mathcal{O}_\mathcal{X}$-module}, or more precisely a
{\it sheaf of $\mathcal{O}_\mathcal{X}$-modules} if $\mathcal{F}$
is an fppf sheaf. The category of $\mathcal{O}_\mathcal{X}$-modules
is denoted $\textit{Mod}(\mathcal{O}_\mathcal{X})$.
\end{enumerate}
\end{definition}
\noindent
These (pre)sheaves of modules occur in the literature as {\it (pre)sheaves
of $\mathcal{O}_\mathcal{X}$-modules on the big fppf site of $\mathcal{X}$}.
We will occasionally use this terminology if we want to distinguish these
categories from others. We will also encounter presheaves of modules which
are sheaves in the Zariski, \'etale, smooth, or syntomic topologies
(without necessarily being sheaves). If need be these will be denoted
$\textit{Mod}(\mathcal{X}_\etale, \mathcal{O}_\mathcal{X})$
and similarly for the other topologies.
\medskip\noindent
Next, we address functoriality -- first for presheaves of modules. Let
$$
\xymatrix{
\mathcal{X} \ar[rr]_f \ar[rd]_p & & \mathcal{Y} \ar[ld]^q \\
& (\Sch/S)_{fppf}
}
$$
be a $1$-morphism of categories fibred in groupoids.
The functors $f^{-1}$, $f_*$ on abelian presheaves extend to functors
\begin{equation}
\label{equation-functoriality-presheaves-modules}
f^{-1} :
\textit{PMod}(\mathcal{O}_\mathcal{Y})
\longrightarrow
\textit{PMod}(\mathcal{O}_\mathcal{X})
\quad\text{and}\quad
f_* :
\textit{PMod}(\mathcal{O}_\mathcal{Y})
\longrightarrow
\textit{PMod}(\mathcal{O}_\mathcal{X})
\end{equation}
This is immediate for $f^{-1}$ because
$f^{-1}\mathcal{G}(x) = \mathcal{G}(f(x))$ which is a module over
$\mathcal{O}_\mathcal{Y}(f(x)) = \mathcal{O}(q(f(x))) = \mathcal{O}(p(x)) =
\mathcal{O}_\mathcal{X}(x)$. Alternatively it follows because
$f^{-1}\mathcal{O}_\mathcal{Y} = \mathcal{O}_\mathcal{X}$
and because $f^{-1}$ commutes with limits (on presheaves).
Since $f_*$ is a right adjoint it commutes with all limits
(on presheaves) in particular products. Hence we can extend
$f_*$ to a functor on presheaves of modules as in the proof of
Modules on Sites, Lemma \ref{sites-modules-lemma-pushforward-module}.
We claim that the functors (\ref{equation-functoriality-presheaves-modules})
form an adjoint pair of functors:
$$
\Mor_{\textit{PMod}(\mathcal{O}_\mathcal{X})}(
f^{-1}\mathcal{G}, \mathcal{F})
=
\Mor_{\textit{PMod}(\mathcal{O}_\mathcal{Y})}(
\mathcal{G}, f_*\mathcal{F}).
$$
As $f^{-1}\mathcal{O}_\mathcal{Y} = \mathcal{O}_\mathcal{X}$
this follows from
Modules on Sites, Lemma \ref{sites-modules-lemma-adjoint-push-pull-modules}
by endowing $\mathcal{X}$ and $\mathcal{Y}$ with the chaotic
topology.
\medskip\noindent
Next, we discuss functoriality for modules, i.e., for sheaves of modules
in the fppf topology. Denote by $f$ also the induced morphism of ringed
topoi, see
Lemma \ref{lemma-functoriality-structure-sheaf}
(for the fppf topologies right now). Note that the functors
$f^{-1}$ and $f_*$ of (\ref{equation-functoriality-presheaves-modules})
preserve the subcategories of sheaves of modules, see
Lemma \ref{lemma-functoriality-sheaves}.
Hence it follows immediately that
\begin{equation}
\label{equation-functoriality-sheaves-modules}
f^{-1} :
\textit{Mod}(\mathcal{O}_\mathcal{Y})
\longrightarrow
\textit{Mod}(\mathcal{O}_\mathcal{X})
\quad\text{and}\quad
f_* :
\textit{Mod}(\mathcal{O}_\mathcal{Y})
\longrightarrow
\textit{Mod}(\mathcal{O}_\mathcal{X})
\end{equation}
form an adjoint pair of functors:
$$
\Mor_{\textit{Mod}(\mathcal{O}_\mathcal{X})}(
f^{-1}\mathcal{G}, \mathcal{F})
=
\Mor_{\textit{Mod}(\mathcal{O}_\mathcal{Y})}(
\mathcal{G}, f_*\mathcal{F}).
$$
By uniqueness of adjoints we conclude that
$f^* = f^{-1}$ where $f^*$ is as defined in
Modules on Sites, Section \ref{sites-modules-section-functoriality-modules}
for the morphism of ringed topoi $f$ above. Of course we could have
seen this directly because
$f^*(-) = f^{-1}(-) \otimes_{f^{-1}\mathcal{O}_\mathcal{Y}}
\mathcal{O}_\mathcal{X}$ and because
$f^{-1}\mathcal{O}_\mathcal{Y} = \mathcal{O}_\mathcal{X}$.
\medskip\noindent
Similarly for sheaves of modules in the Zariski, \'etale, smooth, syntomic
topology.
\section{Representable categories}
\label{section-representable}
\noindent
In this short section we compare our definitions with what happens
in case the algebraic stacks in question are representable.
\begin{lemma}
\label{lemma-compare-with-scheme}
Let $S$ be a scheme. Let $\mathcal{X}$ be a category fibred
in groupoids over $(\Sch/S)$. Assume $\mathcal{X}$ is representable
by a scheme $X$. For $\tau \in \{Zar,\linebreak[0] \etale,\linebreak[0]
smooth,\linebreak[0] syntomic,\linebreak[0] fppf\}$
there is a canonical equivalence
$$
(\mathcal{X}_\tau, \mathcal{O}_\mathcal{X}) =
((\Sch/X)_\tau, \mathcal{O}_X)
$$
of ringed sites.
\end{lemma}
\begin{proof}
This follows by choosing an equivalence
$(\Sch/X)_\tau \to \mathcal{X}$ of categories fibred in groupoids
over $(\Sch/S)_{fppf}$ and using the functoriality of
the construction $\mathcal{X} \leadsto \mathcal{X}_\tau$.
\end{proof}
\begin{lemma}
\label{lemma-compare-with-morphism-of-schemes}
Let $S$ be a scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism
of categories fibred in groupoids over $S$.
Assume $\mathcal{X}$, $\mathcal{Y}$ are representable by schemes
$X$, $Y$. Let $f : X \to Y$ be the morphism of schemes corresponding
to $f$. For $\tau \in \{Zar,\linebreak[0] \etale,\linebreak[0]
smooth,\linebreak[0] syntomic,\linebreak[0] fppf\}$
the morphism of ringed topoi
$f : (\Sh(\mathcal{X}_\tau), \mathcal{O}_\mathcal{X}) \to
(\Sh(\mathcal{X}_\tau), \mathcal{O}_\mathcal{X})$
agrees with the morphisms of ringed topoi
$f : (\Sh((\Sch/X)_\tau), \mathcal{O}_X) \to
(\Sh((\Sch/Y)_\tau), \mathcal{O}_Y)$ via the identifications of
Lemma \ref{lemma-compare-with-scheme}.
\end{lemma}
\begin{proof}
Follows by unwinding the definitions.
\end{proof}
\section{Restriction}
\label{section-restriction}
\noindent
A trivial but useful observation is that the localization
of a category fibred in groupoids at an object
is equivalent to the big site of the scheme it lies over.
\begin{lemma}
\label{lemma-localizing}
Let $p : \mathcal{X} \to (\Sch/S)_{fppf}$ be a category fibred
in groupoids. Let $\tau \in \{Zar, \etale, smooth, syntomic, fppf\}$.
Let $x \in \Ob(\mathcal{X})$ lying over $U = p(x)$.
The functor $p$ induces an equivalence of sites
$\mathcal{X}_\tau/x \to (\Sch/U)_\tau$.
\end{lemma}
\begin{proof}
Note that $(\Sch/U)_\tau$ is the localization of the site
$(\Sch/S)_{fppf}$ at the object $U$. It follows from
Categories, Definition \ref{categories-definition-fibred-groupoids}
that the rule $x'/x \mapsto p(x')/p(x)$ defines an equivalence of
categories $\mathcal{X}_\tau/x \to (\Sch/U)_\tau$.
Whereupon it follows from
Stacks, Definition \ref{stacks-definition-topology-inherited}
that coverings of $x'$ in $\mathcal{X}_\tau/x$ are in bijective correspondence
with coverings of $p(x')$ in $(\Sch/U)_\tau$.
\end{proof}
\noindent
We use the lemma above to talk about the pullback and the restriction
of a (pre)sheaf to a scheme.
\begin{definition}
\label{definition-pullback}