forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstacks-properties.tex
2805 lines (2537 loc) · 102 KB
/
stacks-properties.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Properties of Algebraic Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Please see
Algebraic Stacks, Section \ref{algebraic-section-introduction}
for a brief introduction to algebraic stacks, and please read
some of that chapter for our foundations of algebraic stacks.
The intent is that in that chapter we are careful to distinguish
between schemes, algebraic spaces, algebraic stacks, and starting
with this chapter we employ the customary abuse of language where
all of these concepts are used interchangeably.
\medskip\noindent
The goal of this chapter is to introduce some basic notions and
properties of algebraic stacks. A fundamental
reference for the case of quasi-separated algebraic stacks with representable
diagonal is \cite{LM-B}.
\section{Conventions and abuse of language}
\label{section-conventions}
\noindent
We choose a big fppf site $\Sch_{fppf}$.
All schemes are contained in $\Sch_{fppf}$.
And all rings $A$ considered have the property that
$\Spec(A)$ is (isomorphic) to an object of this big site.
\medskip\noindent
We also fix a base scheme $S$, by the conventions above an element
of $\Sch_{fppf}$. The reader who is only interested
in the absolute case can take $S = \Spec(\mathbf{Z})$.
\medskip\noindent
Here are our conventions regarding algebraic stacks:
\begin{enumerate}
\item When we say {\it algebraic stack} we will mean an algebraic
stacks over $S$, i.e., a category fibred in groupoids
$p : \mathcal{X} \to (\Sch/S)_{fppf}$
which satisfies the conditions of
Algebraic Stacks, Definition \ref{algebraic-definition-algebraic-stack}.
\item We will say $f : \mathcal{X} \to \mathcal{Y}$ is a
{\it morphism of algebraic stacks} to indicate a $1$-morphism
of algebraic stacks over $S$, i.e., a $1$-morphism of categories fibred
in groupoids over $(\Sch/S)_{fppf}$, see
Algebraic Stacks,
Definition \ref{algebraic-definition-morphism-algebraic-stacks}.
\item A {\it $2$-morphism} $\alpha : f \to g$ will
indicate a $2$-morphism in the $2$-category of algebraic stacks over
$S$, see
Algebraic Stacks,
Definition \ref{algebraic-definition-morphism-algebraic-stacks}.
\item Given morphisms $\mathcal{X} \to \mathcal{Z}$
and $\mathcal{Y} \to \mathcal{Z}$ of algebraic stacks
we abusively call the $2$-fibre product
$\mathcal{X} \times_\mathcal{Z} \mathcal{Y}$ the {\it fibre product}.
\item We will write $\mathcal{X} \times_S \mathcal{Y}$ for the
product of the algebraic stacks $\mathcal{X}$, $\mathcal{Y}$.
\item We will often abuse notation and say two algebraic stacks
$\mathcal{X}$ and $\mathcal{Y}$ are {\it isomorphic} if they are
equivalent in this $2$-category.
\end{enumerate}
\medskip\noindent
Here are our conventions regarding algebraic spaces.
\begin{enumerate}
\item If we say $X$ is an {\it algebraic space} then we mean that
$X$ is an algebraic space over $S$, i.e., $X$ is a presheaf on
$(\Sch/S)_{fppf}$ which satisfies the conditions of
Spaces, Definition \ref{spaces-definition-algebraic-space}.
\item A {\it morphism of algebraic spaces} $f :X \to Y$ is a morphism
of algebraic spaces over $S$ as defined in
Spaces, Definition \ref{spaces-definition-morphism-algebraic-spaces}.
\item We will {\bf not} distinguish between an algebraic space $X$
and the algebraic stack $\mathcal{S}_X \to (\Sch/S)_{fppf}$
it gives rise to, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-algebraic}.
\item In particular, a {\it morphism} $f : X \to \mathcal{Y}$ from $X$
to an algebraic stack $\mathcal{Y}$ means a morphism
$f : \mathcal{S}_X \to \mathcal{Y}$ of algebraic stacks.
Similarly for morphisms $\mathcal{Y} \to X$.
\item Moreover, given an algebraic stack $\mathcal{X}$ we say
{\it $\mathcal{X}$ is an algebraic space} to indicate that $\mathcal{X}$
is representable by an algebraic space, see
Algebraic Stacks,
Definition \ref{algebraic-definition-representable-by-algebraic-space}.
\item We will use the following notational convention: If we
indicate an algebraic stack by a roman capital
(such as $X, Y, Z, A, B, \ldots$) then it will be the case that
its inertia stack is trivial, and hence it is an algebraic space, see
Algebraic Stacks,
Proposition \ref{algebraic-proposition-algebraic-stack-no-automorphisms}.
\end{enumerate}
\medskip\noindent
Here are our conventions regarding schemes.
\begin{enumerate}
\item If we say $X$ is a {\it scheme} then we mean that
$X$ is a scheme over $S$, i.e., $X$ is an object of $(\Sch/S)_{fppf}$.
\item By a {\it morphism of schemes} we mean a morphism of schemes over $S$.
\item We will {\bf not} distinguish between a scheme $X$ and the
algebraic stack $\mathcal{S}_X \to (\Sch/S)_{fppf}$ it gives rise
to, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-algebraic}.
\item In particular, a {\it morphism} $f : X \to \mathcal{Y}$ from
a scheme $X$ to an algebraic stack $\mathcal{Y}$ means a morphism
$f : \mathcal{S}_X \to \mathcal{Y}$ of algebraic stacks.
Similarly for morphisms $\mathcal{Y} \to X$.
\item Moreover, given an algebraic stack $\mathcal{X}$ we say
{\it $\mathcal{X}$ is a scheme} to indicate that $\mathcal{X}$
is representable, see
Algebraic Stacks, Section \ref{algebraic-section-representable}.
\end{enumerate}
\medskip\noindent
Here are our conventions regarding morphism of algebraic stacks:
\begin{enumerate}
\item A morphism $f : \mathcal{X} \to \mathcal{Y}$
of algebraic stacks is {\it representable}, or
{\it representable by schemes} if for every scheme
$T$ and morphism $T \to \mathcal{Y}$ the fibre product
$T \times_\mathcal{Y} \mathcal{X}$ is a scheme.
See
Algebraic Stacks, Section \ref{algebraic-section-representable-morphism}.
\item A morphism $f : \mathcal{X} \to \mathcal{Y}$
of algebraic stacks is {\it representable by algebraic spaces}
if for every scheme $T$ and morphism $T \to \mathcal{Y}$ the fibre product
$T \times_\mathcal{Y} \mathcal{X}$ is an algebraic space.
See Algebraic Stacks,
Definition \ref{algebraic-definition-representable-by-algebraic-spaces}.
In this case $Z \times_\mathcal{Y} \mathcal{X}$ is an algebraic
space whenever $Z \to \mathcal{Y}$ is a morphism whose source is
an algebraic space, see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-base-change-by-space-representable-by-space}.
\end{enumerate}
Note that every morphism $X \to \mathcal{Y}$ from an algebraic space
to an algebraic stack is representable by algebraic spaces, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal}.
We will use this basic result without further mention.
\section{Properties of morphisms representable by algebraic spaces}
\label{section-properties-morphisms}
\noindent
We will study properties of (arbitrary) morphisms of algebraic stacks in its
own chapter. For morphisms representable by algebraic spaces we know what
it means to be surjective, smooth, or \'etale, etc. This applies in particular
to morphisms $X \to \mathcal{Y}$ from algebraic spaces to algebraic stacks.
In this section, we recall how this works, we list the properties to which
this applies, and we prove a few easy lemmas.
\medskip\noindent
Our first lemma says a morphism is representable by algebraic spaces
if it is so after a base change by a flat,
locally finitely presented, surjective morphism.
\begin{lemma}
\label{lemma-check-representable-covering}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
Let $W$ be an algebraic space and let $W \to \mathcal{Y}$ be surjective,
locally of finite presentation, and flat. The following are equivalent
\begin{enumerate}
\item $f$ is representable by algebraic spaces, and
\item $W \times_\mathcal{Y} \mathcal{X}$ is an algebraic space.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (1) $\Rightarrow$ (2) is
Algebraic Stacks,
Lemma \ref{algebraic-lemma-base-change-by-space-representable-by-space}.
Conversely, let $W \to \mathcal{Y}$ be as in (2). To prove (1) it
suffices to show that $f$ is faithful on fibre categories, see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-characterize-representable-by-algebraic-spaces}.
Assumption (2) implies in particular that
$W \times_\mathcal{Y} \mathcal{X} \to W$ is faithful.
Hence the faithfulness of $f$ follows from
Stacks, Lemma \ref{stacks-lemma-faithful-descent}.
\end{proof}
\medskip\noindent
Let $P$ be a property of morphisms of algebraic spaces which is
fppf local on the target and preserved by arbitrary base change.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces. Then we say
{\it $f$ has property $P$} if and only if for every scheme $T$
and morphism $T \to \mathcal{Y}$ the morphism of algebraic spaces
$T \times_\mathcal{Y} \mathcal{X} \to T$ has property $P$, see
Algebraic Stacks,
Definition \ref{algebraic-definition-relative-representable-property}.
\medskip\noindent
It turns out that if $f : \mathcal{X} \to \mathcal{Y}$ is representable
by algebraic spaces and has property $P$, then for any morphism of algebraic
stacks $\mathcal{Y}' \to \mathcal{Y}$ the base change
$\mathcal{Y}' \times_\mathcal{Y} \mathcal{X} \to \mathcal{Y}'$
has property $P$, see
Algebraic Stacks,
Lemmas \ref{algebraic-lemma-base-change-representable-by-spaces} and
\ref{algebraic-lemma-base-change-representable-transformations-property}.
If the property $P$ is preserved under compositions, then this holds
also in the setting of morphisms of algebraic stacks representable by
algebraic spaces, see
Algebraic Stacks,
Lemmas \ref{algebraic-lemma-composition-representable-by-spaces} and
\ref{algebraic-lemma-composition-representable-transformations-property}.
Moreover, in this case products
$\mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{Y}_2$
of morphisms representable by algebraic spaces having property $\mathcal{P}$
have property $\mathcal{P}$, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-product-representable-transformations-property}.
\medskip\noindent
Finally, if we have two properties $P, P'$ of morphisms of algebraic spaces
which are fppf local on the target and preserved by arbitrary base change
and if $P(f) \Rightarrow P'(f)$ for every morphism $f$, then the same
implication holds for the corresponding property of morphisms of algebraic
stacks representable by algebraic spaces, see
Algebraic Stacks, Lemma
\ref{algebraic-lemma-representable-transformations-property-implication}.
We will use this {\it without further mention} in the following and in the
following chapters.
\medskip\noindent
The discussion above applies to each of the following properties of
morphisms of algebraic spaces
\begin{enumerate}
\item quasi-compact, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-quasi-compact}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-quasi-compact},
\item quasi-separated, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-separated}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-quasi-separated},
\item universally closed, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-universally-closed}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-universally-closed},
\item universally open, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-universally-open}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-universally-open},
\item surjective, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-surjective}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-surjective},
\item universally injective, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-universally-injective}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-universally-injective},
\item locally of finite type, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-type}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-locally-finite-type},
\item locally of finite presentation, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-presentation}
and
Descent on Spaces, Lemma
\ref{spaces-descent-lemma-descending-property-locally-finite-presentation},
\item finite type, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-type}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-finite-type},
\item finite presentation, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-presentation}
and
Descent on Spaces, Lemma
\ref{spaces-descent-lemma-descending-property-finite-presentation},
\item flat, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-flat}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-flat},
\item open immersion, see
Morphisms of Spaces,
Section \ref{spaces-morphisms-section-immersions}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-open-immersion},
\item isomorphism, see
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-isomorphism},
\item affine, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-affine}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-affine},
\item closed immersion, see
Morphisms of Spaces, Section \ref{spaces-morphisms-section-immersions}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-closed-immersion},
\item separated, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-separated}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-separated},
\item proper, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-proper}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-proper},
\item quasi-affine, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-quasi-affine}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-quasi-affine},
\item integral, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-integral}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-integral},
\item finite, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-integral}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-finite},
\item (locally) quasi-finite, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-quasi-finite}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-quasi-finite},
\item syntomic, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-syntomic}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-syntomic},
\item smooth, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-smooth}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-smooth},
\item unramified, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-unramified}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-unramified},
\item \'etale, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-etale}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-etale},
\item finite locally free, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-locally-free}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-finite-locally-free},
\item monomorphism, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-monomorphism}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-monomorphism},
\item immersion, see
Morphisms of Spaces, Section \ref{spaces-morphisms-section-immersions}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-fppf-property-immersion},
\item locally separated, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-separated}
and
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-fppf-property-locally-separated},
\end{enumerate}
\begin{lemma}
\label{lemma-property-spaces-too}
Let $P$ be a property of morphisms of algebraic spaces as above.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces. The following are equivalent:
\begin{enumerate}
\item $f$ has $P$,
\item for every algebraic space $Z$ and morphism $Z \to \mathcal{Y}$
the morphism $Z \times_\mathcal{Y} \mathcal{X} \to Z$ has $P$.
\end{enumerate}
\end{lemma}
\begin{proof}
The implication (2) $\Rightarrow$ (1) is immediate. Assume (1).
Let $Z \to \mathcal{Y}$ be as in (2). Choose a scheme $U$ and a
surjective \'etale morphism $U \to Z$. By assumption the morphism
$U \times_\mathcal{Y} \mathcal{X} \to U$ has $P$. But the diagram
$$
\xymatrix{
U \times_\mathcal{Y} \mathcal{X} \ar[d] \ar[r] &
Z \times_\mathcal{Y} \mathcal{X} \ar[d] \\
U \ar[r] & Z
}
$$
is cartesian, hence the right vertical arrow has $P$ as
$\{U \to Z\}$ is an fppf covering.
\end{proof}
\noindent
The following lemma tells us it suffices to check $P$
after a base change by a surjective, flat, locally finitely presented
morphism.
\begin{lemma}
\label{lemma-check-property-covering}
Let $P$ be a property of morphisms of algebraic spaces as above.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces.
Let $W$ be an algebraic space and let $W \to \mathcal{Y}$ be surjective,
locally of finite presentation, and flat.
Set $V = W \times_\mathcal{Y} \mathcal{X}$. Then
$$
(f\text{ has }P) \Leftrightarrow (\text{the projection }V \to W\text{ has }P).
$$
\end{lemma}
\begin{proof}
The implication from left to right follows from
Lemma \ref{lemma-property-spaces-too}.
Assume $V \to W$ has $P$. Let $T$ be a scheme, and let
$T \to \mathcal{Y}$ be a morphism. Consider the commutative diagram
$$
\xymatrix{
T \times_\mathcal{Y} \mathcal{X} \ar[d] &
T \times_\mathcal{Y} W \ar[d] \ar[l] \ar[r] &
W \ar[d] \\
T & T \times_\mathcal{Y} V \ar[l] \ar[r] & V
}
$$
of algebraic spaces. The squares are cartesian.
The bottom left morphism is a surjective, flat morphism which is locally of
finite presentation, hence $\{T \times_\mathcal{Y} V \to T\}$ is an
fppf covering. Hence the fact that the right vertical arrow has property
$P$ implies that the left vertical arrow has property $P$.
\end{proof}
\begin{lemma}
\label{lemma-check-property-weak-covering}
Let $P$ be a property of morphisms of algebraic spaces as above.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces.
Let $\mathcal{Z} \to \mathcal{Y}$ be a morphism of algebraic stacks which
is representable by algebraic spaces, surjective, flat, and
locally of finite presentation.
Set $\mathcal{W} = \mathcal{Z} \times_\mathcal{Y} \mathcal{X}$. Then
$$
(f\text{ has }P) \Leftrightarrow
(\text{the projection }\mathcal{W} \to \mathcal{Z}\text{ has }P).
$$
\end{lemma}
\begin{proof}
Choose an algebraic space $W$ and a morphism
$W \to \mathcal{Z}$ which is surjective, flat, and locally of finite
presentation. By the discussion above the composition
$W \to \mathcal{Y}$ is also surjective, flat, and locally of finite
presentation. Denote
$V = W \times_\mathcal{Z} \mathcal{W} = V \times_\mathcal{Y} \mathcal{X}$.
By
Lemma \ref{lemma-check-property-covering}
we see that $f$ has $\mathcal{P}$ if and only if $V \to W$ does
and that $\mathcal{W} \to \mathcal{Z}$ has $\mathcal{P}$ if and only
if $V \to W$ does. The lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-check-property-after-precomposing}
Let $P$ be a property of morphisms of algebraic spaces as above.
Let $\mathcal{X} \to \mathcal{Y}$ and $\mathcal{Y} \to \mathcal{Z}$
be morphisms of algebraic stacks representable by algebraic spaces.
Assume
\begin{enumerate}
\item $\mathcal{X} \to \mathcal{Y}$ is surjective, flat, and locally
of finite presentation,
\item the composition has $P$, and
\item $P$ is local on the source in the fppf topology.
\end{enumerate}
Then $\mathcal{Y} \to \mathcal{Z}$ has property $P$.
\end{lemma}
\begin{proof}
Let $Z$ be a scheme and let $Z \to \mathcal{Z}$ be a morphism.
Set $X = \mathcal{X} \times_\mathcal{Z} Z$,
$Y = \mathcal{Y} \times_\mathcal{Z} Z$. By (1) $\{X \to Y\}$
is an fppf covering of algebraic spaces and by (2) $X \to Z$ has property
$P$. By (3) this implies that $Y \to Z$ has property $P$
and we win.
\end{proof}
\begin{lemma}
\label{lemma-representable-in-terms-presentations}
Let $g : \mathcal{X}' \to \mathcal{X}$ be a morphism of algebraic stacks
which is representable by algebraic spaces. Let $[U/R] \to \mathcal{X}$
be a presentation. Set $U' = U \times_\mathcal{X} \mathcal{X}'$,
and $R' = R \times_\mathcal{X} \mathcal{X}'$.
Then there exists a groupoid in algebraic spaces of the form
$(U', R', s', t', c')$, a presentation $[U'/R'] \to \mathcal{X}'$,
and the diagram
$$
\xymatrix{
[U'/R'] \ar[d]_{[\text{pr}]} \ar[r] & \mathcal{X}' \ar[d]^g \\
[U/R] \ar[r] & \mathcal{X}
}
$$
is $2$-commutative where the morphism $[\text{pr}]$ comes from a
morphism of groupoids
$\text{pr} : (U', R', s', t', c') \to (U, R, s, t, c)$.
\end{lemma}
\begin{proof}
Since $U \to \mathcal{Y}$ is surjective and smooth, see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-smooth-quotient-smooth-presentation}
the base change $U' \to \mathcal{X}'$ is also surjective and smooth.
Hence, by
Algebraic Stacks,
Lemma \ref{algebraic-lemma-stack-presentation}
it suffices to show that $R' = U' \times_{\mathcal{X}'} U'$ in order to
get a smooth groupoid $(U', R', s', t', c')$ and a presentation
$[U'/R'] \to \mathcal{X}'$.
Using that $R = V \times_\mathcal{Y} V$ (see
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-quotient-stack-2-cartesian})
this follows from
$$
R' =
U \times_\mathcal{X} U \times_\mathcal{X} \mathcal{X}' =
(U \times_\mathcal{X} \mathcal{X}')
\times_{\mathcal{X}'}
(U \times_\mathcal{X} \mathcal{X}')
$$
see
Categories, Lemmas \ref{categories-lemma-associativity-2-fibre-product} and
\ref{categories-lemma-2-fibre-product-erase-factor}.
Clearly the projection morphisms $U' \to U$ and $R' \to R$ give the
desired morphism of groupoids
$\text{pr} : (U', R', s', t', c') \to (U, R, s, t, c)$.
Hence the morphism $[\text{pr}]$ of quotient stacks by
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-quotient-stack-functorial}.
\medskip\noindent
We still have to show that the diagram $2$-commutes.
It is clear that the diagram
$$
\xymatrix{
U' \ar[d]_{\text{pr}_U} \ar[r]_{f'} & \mathcal{X}' \ar[d]^g \\
U \ar[r]^f & \mathcal{X}
}
$$
$2$-commutes where $\text{pr}_U : U' \to U$ is the projection.
There is a canonical $2$-arrow
$\tau : f \circ t \to f \circ s$ in $\Mor(R, \mathcal{X})$
coming from $R = U \times_\mathcal{X} U$, $t = \text{pr}_0$, and
$s = \text{pr}_1$. Using the isomorphism
$R' \to U' \times_{\mathcal{X}'} U'$ we get similarly an isomorphism
$\tau' : f' \circ t' \to f' \circ s'$. Note that
$g \circ f' \circ t' = f \circ t \circ \text{pr}_R$ and
$g \circ f' \circ s' = f \circ s \circ \text{pr}_R$, where
$\text{pr}_R : R' \to R$ is the projection. Thus it makes sense to ask
if
\begin{equation}
\label{equation-verify}
\tau \star \text{id}_{\text{pr}_R} = \text{id}_g \star \tau'.
\end{equation}
Now we make two claims: (1) if Equation (\ref{equation-verify}) holds,
then the diagram $2$-commutes, and (2) Equation (\ref{equation-verify}) holds.
We omit the proof of both claims. Hints: part (1) follows from the
construction of $f = f_{can}$ and $f' = f'_{can}$ in
Algebraic Stacks, Lemma \ref{algebraic-lemma-map-space-into-stack}.
Part (2) follows by carefuly working through the definitions.
\end{proof}
\begin{remark}
\label{remark-representable-over}
Let $\mathcal{Y}$ be an algebraic stack. Consider the following
$2$-category:
\begin{enumerate}
\item An object is a morphism $f : \mathcal{X} \to \mathcal{Y}$
which is representable by algebraic spaces,
\item a $1$-morphism
$(g, \beta) :
(f_1 : \mathcal{X}_1 \to \mathcal{Y})
\to
(f_2 : \mathcal{X}_2 \to \mathcal{Y})$
consists of a morphism $g : \mathcal{X}_1 \to \mathcal{X}_2$ and a
$2$-morphism $\beta : f_1 \to f_2 \circ g$, and
\item a $2$-morphism between
$(g, \beta), (g', \beta') :
(f_1 : \mathcal{X}_1 \to \mathcal{Y})
\to
(f_2 : \mathcal{X}_2 \to \mathcal{Y})$
is a $2$-morphism $\alpha : g \to g'$ such that
$(\text{id}_{f_2} \star \alpha) \circ \beta = \beta'$.
\end{enumerate}
Let us denote this $2$-category $\textit{Spaces}/\mathcal{Y}$ by
analogy with the notation of
Topologies on Spaces, Section \ref{spaces-topologies-section-procedure}.
Now we claim that in this $2$-category the morphism categories
$$
\Mor_{\textit{Spaces}/\mathcal{Y}}(
(f_1 : \mathcal{X}_1 \to \mathcal{Y}),
(f_2 : \mathcal{X}_2 \to \mathcal{Y}))
$$
are all setoids. Namely, a $2$-morphism $\alpha$ is a rule which to each
object $x_1$ of $\mathcal{X}_1$ assigns an isomorphism
$\alpha_{x_1} : g(x_1) \longrightarrow g'(x_1)$
in the relevant fibre category of $\mathcal{X}_2$ such that the diagram
$$
\xymatrix{
& f_2(x_1) \ar[ld]_{\beta_{x_1}} \ar[rd]^{\beta'_{x_1}} \\
f_2(g(x_1)) \ar[rr]^{f_2(\alpha_{x_1})} & &
f_2(g'(x_1))
}
$$
commutes. But since $f_2$ is faithful (see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-characterize-representable-by-algebraic-spaces})
this means that if $\alpha_{x_1}$ exists, then it is unique! In other words the
$2$-category $\textit{Spaces}/\mathcal{Y}$ is very close to
being a category. Namely, if we replace $1$-morphisms by isomorphism
classes of $1$-morphisms we obtain a category. We will often
perform this replacement without further mention.
\end{remark}
\section{Points of algebraic stacks}
\label{section-points}
\noindent
Let $\mathcal{X}$ be an algebraic stack. Let $K, L$ be two fields
and let $p : \Spec(K) \to \mathcal{X}$ and
$q : \Spec(L) \to \mathcal{X}$ be morphisms.
We say that $p$ and $q$ are {\it equivalent} if there exists a
field $\Omega$ and a $2$-commutative diagram
$$
\xymatrix{
\Spec(\Omega) \ar[r] \ar[d] &
\Spec(L) \ar[d]^q \\
\Spec(K) \ar[r]^p &
\mathcal{X}.
}
$$
\begin{lemma}
\label{lemma-equivalence}
The notion above does indeed define an equivalence relation on
morphisms from spectra of fields into the algebraic stack $\mathcal{X}$.
\end{lemma}
\begin{proof}
It is clear that the relation is reflexive and symmetric.
Hence we have to prove that it is transitive. This comes down
to the following: Given a diagram
$$
\xymatrix{
\Spec(\Omega) \ar[r]_b \ar[d]_a &
\Spec(L) \ar[d]^q & \Spec(\Omega') \ar[l]^{b'} \ar[d]^{a'} \\
\Spec(K) \ar[r]^p &
\mathcal{X} &
\Spec(K') \ar[l]_{p'}
}
$$
with both squares $2$-commutative we have to show that $p$ is equivalent to
$p'$. By the $2$-Yoneda lemma (see
Algebraic Stacks, Section \ref{algebraic-section-2-yoneda})
the morphisms $p$, $p'$, and $q$ are given by objects
$x$, $x'$, and $y$ in the fibre categories of $\mathcal{X}$ over
$\Spec(K)$, $\Spec(K')$, and $\Spec(L)$. The
$2$-commutativity of the squares means that there are isomorphisms
$\alpha : a^*x \to b^*y$ and $\alpha' : (a')^*x' \to (b')^*y$
in the fibre categories
of $\mathcal{X}$ over $\Spec(\Omega)$ and $\Spec(\Omega')$.
Choose any field $\Omega''$ and embeddings
$\Omega \to \Omega''$ and $\Omega' \to \Omega''$ agreeing on $L$.
Then we can extend the diagram above to
$$
\xymatrix{
& \Spec(\Omega'') \ar[ld]_c \ar[d]^{q'} \ar[rd]^{c'} \\
\Spec(\Omega) \ar[r]_b \ar[d]_a &
\Spec(L) \ar[d]^q & \Spec(\Omega') \ar[l]^{b'} \ar[d]^{a'} \\
\Spec(K) \ar[r]^p &
\mathcal{X} &
\Spec(K') \ar[l]_{p'}
}
$$
with commutative triangles and
$$
(q')^*(\alpha')^{-1} \circ (q')^*\alpha :
(a \circ c)^*x
\longrightarrow
(a' \circ c')^*x'
$$
is an isomorphism in the fibre category over $\Spec(\Omega'')$.
Hence $p$ is equivalent to $p'$ as desired.
\end{proof}
\begin{definition}
\label{definition-points}
Let $\mathcal{X}$ be an algebraic stack.
A {\it point} of $\mathcal{X}$ is an equivalence class of morphisms
from spectra of fields into $\mathcal{X}$.
The set of points of $\mathcal{X}$ is denoted $|\mathcal{X}|$.
\end{definition}
\noindent
This agrees with our definition of points of algebraic spaces, see
Properties of Spaces, Definition \ref{spaces-properties-definition-points}.
Moreover, for a scheme we recover the usual notion of points, see
Properties of Spaces, Lemma \ref{spaces-properties-lemma-scheme-points}.
If $f : \mathcal{X} \to \mathcal{Y}$ is a morphism of algebraic stacks
then there is an induced map $|f| : |\mathcal{X}| \to |\mathcal{Y}|$ which
maps a representative $x : \Spec(K) \to \mathcal{X}$ to the
representative $f \circ x : \Spec(K) \to \mathcal{Y}$. This is
well defined: namely $2$-isomorphic $1$-morphisms remain $2$-isomorphic after
pre- or post-composing by a $1$-morphism because you can horizontally
pre- or post-compose by the identity of the given $1$-morphism. This holds
in any (strict) $(2, 1)$-category. If
$$
\xymatrix{
\mathcal{X} \ar[d] \ar[r] & \mathcal{Y} \ar[d] \\
\mathcal{W} \ar[r] & \mathcal{Z}
}
$$
is a $2$-commutative diagram of algebraic stacks, then the diagram
of sets
$$
\xymatrix{
|\mathcal{X}| \ar[d] \ar[r] & |\mathcal{Y}| \ar[d] \\
|\mathcal{W}| \ar[r] & |\mathcal{Z}|
}
$$
is commutative.
In particular, if $\mathcal{X} \to \mathcal{Y}$ is an equivalence
then $|\mathcal{X}| \to |\mathcal{Y}|$ is a bijection.
\begin{lemma}
\label{lemma-points-cartesian}
Let
$$
\xymatrix{
\mathcal{Z} \times_\mathcal{Y} \mathcal{X} \ar[r] \ar[d] &
\mathcal{X} \ar[d] \\
\mathcal{Z} \ar[r] & \mathcal{Y}
}
$$
be a fibre product of algebraic stacks. Then the map of sets
of points
$$
|\mathcal{Z} \times_\mathcal{Y} \mathcal{X}|
\longrightarrow
|\mathcal{Z}| \times_{|\mathcal{Y}|} |\mathcal{X}|
$$
is surjective.
\end{lemma}
\begin{proof}
Namely, suppose given fields $K$, $L$ and morphisms
$\Spec(K) \to \mathcal{X}$, $\Spec(L) \to \mathcal{Z}$,
then the assumption that they agree as elements of $|\mathcal{Y}|$ means that
there is a common extension $K \subset M$ and $L \subset M$
such that
$\Spec(M) \to \Spec(K) \to \mathcal{X} \to \mathcal{Y}$ and
$\Spec(M) \to \Spec(L) \to \mathcal{Z} \to \mathcal{Y}$
are $2$-isomorphic. And this is exactly the condition which says you get a
morphism $\Spec(M) \to \mathcal{Z} \times_\mathcal{Y} \mathcal{X}$.
\end{proof}
\begin{lemma}
\label{lemma-characterize-surjective}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
which is representable by algebraic spaces. The following are equivalent:
\begin{enumerate}
\item $|f| : |\mathcal{X}| \to |\mathcal{Y}|$ is surjective, and
\item $f$ is surjective.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1). Let $T \to \mathcal{Y}$ be a morphism whose source is a scheme.
To prove (2) we have to show that the morphism of algebraic spaces
$T \times_\mathcal{Y} \mathcal{X} \to T$ is surjective. By
Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-surjective}
this means we have to show that
$|T \times_\mathcal{Y} \mathcal{X}| \to |T|$ is surjective.
Applying
Lemma \ref{lemma-points-cartesian}
we see that this follows from (1).
\medskip\noindent
Conversely, assume (2). Let $y : \Spec(K) \to \mathcal{Y}$ be a
morphism from the spectrum of a field into $\mathcal{Y}$. By assumption the
morphism
$\Spec(K) \times_{y, \mathcal{Y}} \mathcal{X} \to \Spec(K)$
of algebraic spaces is surjective. By
Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-surjective}
this means there exists a field extension
$K \subset K'$ and a morphism
$\Spec(K') \to \Spec(K) \times_{y, \mathcal{Y}} \mathcal{X}$
such that the left square of the diagram
$$
\xymatrix{
\Spec(K') \ar[r] \ar[d] &
\Spec(K) \times_{y, \mathcal{Y}} \mathcal{X} \ar[d] \ar[r] &
\mathcal{X} \ar[d]
\\
\Spec(K) \ar@{=}[r] &
\Spec(K) \ar[r]^-y &
\mathcal{Y}
}
$$
is commutative. This shows that $|X| \to |\mathcal{Y}|$ is surjective.
\end{proof}
\noindent
Here is a lemma explaining how to compute the set of points in terms
of a presentation.
\begin{lemma}
\label{lemma-points-presentation}
Let $\mathcal{X}$ be an algebraic stack.
Let $\mathcal{X} = [U/R]$ be a presentation of $\mathcal{X}$, see
Algebraic Stacks, Definition \ref{algebraic-definition-presentation}.
Then the image of $|R| \to |U| \times |U|$ is an equivalence relation
and $|\mathcal{X}|$ is the quotient of $|U|$ by this equivalence relation.
\end{lemma}
\begin{proof}
The assumption means that we have a smooth groupoid $(U, R, s, t, c)$
in algebraic spaces, and an equivalence $f : [U/R] \to \mathcal{X}$.
We may assume $\mathcal{X} = [U/R]$.
The induced morphism $p : U \to \mathcal{X}$ is smooth and surjective, see
Algebraic Stacks,
Lemma \ref{algebraic-lemma-smooth-quotient-smooth-presentation}.
Hence $|U| \to |\mathcal{X}|$ is surjective by
Lemma \ref{lemma-characterize-surjective}.
Note that $R = U \times_\mathcal{X} U$, see
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-quotient-stack-2-cartesian}.
Hence
Lemma \ref{lemma-points-cartesian}
implies the map
$$
|R| \longrightarrow |U| \times_{|\mathcal{X}|} |U|
$$
is surjective. Hence the image of $|R| \to |U| \times |U|$ is
exactly the set of pairs $(u_1, u_2) \in |U| \times |U|$
such that $u_1$ and $u_2$ have the same image in $|\mathcal{X}|$.
Combining these two statements we get the result of the lemma.
\end{proof}
\begin{remark}
\label{remark-more-general-presentation}
The result of
Lemma \ref{lemma-points-presentation}
can be generalized as follows.
Let $\mathcal{X}$ be an algebraic stack.
Let $U$ be an algebraic space and let $f : U \to \mathcal{X}$ be a surjective
morphism (which makes sense by
Section \ref{section-properties-morphisms}).
Let $R = U \times_\mathcal{X} U$, let $(U, R, s, t, c)$ be the groupoid
in algebraic spaces, and let $f_{can} : [U/R] \to \mathcal{X}$ be the
canonical morphism as constructed in
Algebraic Stacks, Lemma \ref{algebraic-lemma-map-space-into-stack}.
Then the image of $|R| \to |U| \times |U|$ is an equivalence relation
and $|\mathcal{X}| = |U|/|R|$. The proof of
Lemma \ref{lemma-points-presentation}
works without change. (Of course in general $[U/R]$ is not an algebraic
stack, and in general $f_{can}$ is not an isomorphism.)
\end{remark}
\begin{lemma}
\label{lemma-topology-points}
There exists a unique topology on the sets of points
of algebraic stacks with the following properties:
\begin{enumerate}
\item for every morphism of algebraic stacks $\mathcal{X} \to \mathcal{Y}$
the map $|\mathcal{X}| \to |\mathcal{Y}|$ is continuous, and
\item for every morphism $U \to \mathcal{X}$ which is flat and locally
of finite presentation with $U$ an algebraic space
the map of topological spaces $|U| \to |\mathcal{X}|$ is continuous and open.
\end{enumerate}
\end{lemma}
\begin{proof}
Choose a morphism $p : U \to \mathcal{X}$ which is
surjective, flat, and locally of finite presentation
with $U$ an algebraic space. Such exist by the definition of an algebraic
stack, as a smooth morphism is flat and locally of finite presentation
(see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-smooth-locally-finite-presentation} and
\ref{spaces-morphisms-lemma-smooth-flat}).
We define a topology on $|\mathcal{X}|$ by the rule:
$W \subset |\mathcal{X}|$ is open if and only if $|p|^{-1}(W)$ is open
in $|U|$. To show that this is independent of the choice of $p$, let
$p' : U' \to \mathcal{X}$ be another morphism which is surjective, flat,
locally of finite presentation from an algebraic space to
$\mathcal{X}$. Set $U'' = U \times_\mathcal{X} U'$
so that we have a $2$-commutative diagram
$$
\xymatrix{
U'' \ar[r] \ar[d] & U' \ar[d] \\
U \ar[r] & \mathcal{X}
}
$$
As $U \to \mathcal{X}$ and $U' \to \mathcal{X}$ are surjective, flat,
locally of finite presentation we see that $U'' \to U'$ and $U'' \to U$
are surjective, flat and locally of finite presentation, see
Lemma \ref{lemma-property-spaces-too}.
Hence the maps $|U''| \to |U'|$ and $|U''| \to |U|$ are continuous, open
and surjective, see
Morphisms of Spaces,
Definition \ref{spaces-morphisms-definition-surjective} and
Lemma \ref{spaces-morphisms-lemma-fppf-open}.
This clearly implies that our definition is independent of the choice
of $p : U \to \mathcal{X}$.
\medskip\noindent
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
By
Algebraic Stacks, Lemma \ref{algebraic-lemma-lift-morphism-presentations}
we can find a $2$-commutative diagram
$$
\xymatrix{
U \ar[d]_x \ar[r]_a & V \ar[d]^y \\
\mathcal{X} \ar[r]^f & \mathcal{Y}
}
$$
with surjective smooth vertical arrows.
Consider the associated commutative diagram
$$
\xymatrix{
|U| \ar[d]_{|x|} \ar[r]_{|a|} & |V| \ar[d]^{|y|} \\
|\mathcal{X}| \ar[r]^{|f|} & |\mathcal{Y}|
}
$$
of sets. If $W \subset |\mathcal{Y}|$ is open, then by the definition
above this means exactly that $|y|^{-1}(W)$ is open in $|V|$. Since
$|a|$ is continuous we conclude that
$|a|^{-1}|y|^{-1}(W) = |x|^{-1}|f|^{-1}(W)$ is open in $|W|$ which means
by definition that $|f|^{-1}(W)$ is open in $|\mathcal{X}|$.
Thus $|f|$ is continuous.
\medskip\noindent
Finally, we have to show that if $U$ is an algebraic space, and