forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspaces-over-fields.tex
283 lines (228 loc) · 9.43 KB
/
spaces-over-fields.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Algebraic Spaces over Fields}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is the analogue of the chapter on varieties in the setting
of algebraic spaces. A reference for algebraic spaces is
\cite{K}.
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{Geometric components}
\label{section-geometric-components}
\begin{lemma}
\label{lemma-minimal-primes-tensor-strictly-henselian}
Let $k$ be an algebraically closed field. Let $A$, $B$ be strictly
henselian local $k$-algebras with residue field equal to $k$.
Let $C$ be the strict henselization of $A \otimes_k B$ at the maximal
ideal $\mathfrak m_A \otimes_k B + A \otimes_k \mathfrak m_B$.
Then the minimal primes of $C$ correspond $1$-to-$1$ to pairs of
minimal primes of $A$ and $B$.
\end{lemma}
\begin{proof}
First note that a minimal prime $\mathfrak r$ of $C$ maps to a minimal
prime $\mathfrak p$ in $A$ and to a minimal prime $\mathfrak q$ of $B$
because the ring maps $A \to C$ and $B \to C$ are flat (by going down for
flat ring map
Algebra, Lemma \ref{algebra-lemma-flat-going-down}).
Hence it suffices to show that the strict henselization of
$(A/\mathfrak p \otimes_k B/\mathfrak q)_{
\mathfrak m_A \otimes_k B + A \otimes_k \mathfrak m_B}$
has a unique minimal prime ideal. By
Algebra, Lemma \ref{algebra-lemma-quotient-strict-henselization}
the rings $A/\mathfrak p$, $B/\mathfrak q$ are strictly henselian.
Hence we may assume that $A$ and $B$ are strictly henselian
local domains and our goal is to show that $C$ has a unique minimal prime. By
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-geometrically-unibranch}.
we see that the integral closure $A'$ of $A$ in its fraction field
is a normal local domain with residue field $k$ and similarly for the
integral closure $B'$ of $B$ into its fraction field. By
Algebra, Lemma \ref{algebra-lemma-geometrically-normal-tensor-normal}
we see that $A' \otimes_k B'$ is a normal ring. Hence its localization
$$
R = (A' \otimes_k B')_{
\mathfrak m_{A'} \otimes_k B' + A' \otimes_k \mathfrak m_{B'}}
$$
is a normal local domain. Note that $A \otimes_k B \to A' \otimes_k B'$
is integral (hence gong up holds --
Algebra, Lemma \ref{algebra-lemma-integral-going-up})
and that $\mathfrak m_{A'} \otimes_k B' + A' \otimes_k \mathfrak m_{B'}$
is the unique maximal ideal of $A' \otimes_k B'$
lying over $\mathfrak m_A \otimes_k B + A \otimes_k \mathfrak m_B$.
Hence we see that
$$
R = (A' \otimes_k B')_{
\mathfrak m_A \otimes_k B + A \otimes_k \mathfrak m_B}
$$
by
Algebra, Lemma \ref{algebra-lemma-unique-prime-over-localize-below}.
It follows that
$$
(A \otimes_k B)_{
\mathfrak m_A \otimes_k B + A \otimes_k \mathfrak m_B}
\longrightarrow
R
$$
is integral. We conclude that $R$ is the integral closure of
$(A \otimes_k B)_{
\mathfrak m_A \otimes_k B + A \otimes_k \mathfrak m_B}$
in its fraction field, and by
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-geometrically-unibranch}
once again we conclude that $C$ has a unique prime ideal.
\end{proof}
\section{Schematic locus}
\label{section-schematic}
\begin{lemma}
\label{lemma-locally-finite-type-dim-zero}
Let $k$ be a field. Let $X$ be an algebraic space over $\Spec(k)$.
If $X$ is locally of finite type over $k$ and has dimension $0$, then $X$
is a scheme.
\end{lemma}
\begin{proof}
Let $U$ be an affine scheme and let $U \to X$ be an \'etale morphism.
Set $R = U \times_X U$. Note that the two projection morphisms
$s, t : R \to U$ are \'etale morphisms of schemes. By
Properties of Spaces, Definition \ref{spaces-properties-definition-dimension}
we see that $\dim(U) = 0$ and similarly $\dim(R) = 0$. On the other hand,
the morphism $U \to \Spec(k)$ is locally of finite type as the
composition of the \'etale morphism $U \to X$ and $X \to \Spec(k)$, see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-composition-finite-type} and
\ref{spaces-morphisms-lemma-etale-locally-finite-type}.
Similarly, $R \to \Spec(k)$ is locally of finite type.
Hence by
Varieties, Lemma \ref{varieties-lemma-algebraic-scheme-dim-0}
we see that $U$ and $R$ are disjoint unions of spectra of
local Artinian $k$-algebras $A$ finite over $k$. In particular, as
$$
R = U \times_X U \longrightarrow U \times_{\Spec(k)} U
$$
is a monomorphism, we see that $R$ is a finite union of spectra of
finite $k$-algebras. It follows that $R$ is affine, see
Schemes, Lemma \ref{schemes-lemma-disjoint-union-affines}.
Applying
Varieties, Lemma \ref{varieties-lemma-algebraic-scheme-dim-0}
once more we see that $R$ is finite over $k$. Hence $s, t$
are finite, see
Morphisms, Lemma \ref{morphisms-lemma-finite-permanence}.
Thus
Groupoids, Proposition \ref{groupoids-proposition-finite-flat-equivalence}
shows that the open subspace $U/R$ of $X$ is an affine scheme. Since the
schematic locus of $X$ is an open subspace (see
Properties of Spaces, Lemma \ref{spaces-properties-lemma-subscheme}),
and since $U \to X$ was an arbitrary \'etale morphism from an affine scheme
we conclude that $X$ is a scheme.
\end{proof}
\begin{lemma}
\label{lemma-locally-quasi-finite-over-field}
Let $k$ be a field. Let $X$ be an algebraic space over $k$.
The following are equivalent
\begin{enumerate}
\item $X$ is locally quasi-finite over $k$,
\item $X$ is locally of finite type over $k$ and has dimension $0$,
\item $X$ is a scheme and is locally quasi-finite over $k$,
\item $X$ is a scheme and is locally of finite type over $k$ and has
dimension $0$, and
\item $X$ is a disjoint union of spectra of Artinian local $k$-algebras
$A$ over $k$ with $\dim_k(A) < \infty$.
\end{enumerate}
\end{lemma}
\begin{proof}
Because we are over a field relative dimension of $X/k$ is the same as
the dimension of $X$. Hence by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-locally-quasi-finite-rel-dimension-0}
we see that (1) and (2) are equivalent. Hence it follows from
Lemma \ref{lemma-locally-finite-type-dim-zero}
(and trivial implications) that (1) -- (4) are equivalent.
Finally,
Varieties, Lemma \ref{varieties-lemma-algebraic-scheme-dim-0}
shows that (1) -- (4) are equivalent with (5).
\end{proof}
\begin{lemma}
\label{lemma-mono-towards-locally-quasi-finite-over-field}
Let $k$ be a field. Let $f : X \to Y$ be a monomorphism of algebraic spaces
over $k$. If $Y$ is locally quasi-finite over $k$ so is $X$.
\end{lemma}
\begin{proof}
Assume $Y$ is locally quasi-finite over $k$. By
Lemma \ref{lemma-locally-quasi-finite-over-field}
we see that $Y = \coprod \Spec(A_i)$ where each $A_i$ is an
Artinian local ring finite over $k$. By
Decent Spaces, Lemma
\ref{decent-spaces-lemma-monomorphism-toward-disjoint-union-dim-0-rings}
we see that $X$ is a scheme. Consider $X_i = f^{-1}(\Spec(A_i))$.
Then $X_i$ has either one or zero points. If $X_i$ has zero points there
is nothing to prove. If $X_i$ has one point, then
$X_i = \Spec(B_i)$ with $B_i$ a zero dimensional local ring
and $A_i \to B_i$ is an epimorphism of rings. In particular
$A_i/\mathfrak m_{A_i} = B_i/\mathfrak m_{A_i}B_i$ and we see that
$A_i \to B_i$ is surjective by Nakayama's lemma,
Algebra, Lemma \ref{algebra-lemma-NAK}
(because $\mathfrak m_{A_i}$ is a nilpotent ideal!).
Thus $B_i$ is a finite local $k$-algebra, and we conclude by
Lemma \ref{lemma-locally-quasi-finite-over-field}
that $X \to \Spec(k)$ is locally quasi-finite.
\end{proof}
\section{Spaces smooth over fields}
\label{section-smooth}
\begin{lemma}
\label{lemma-smooth-regular}
Let $k$ be a field.
Let $X$ be an algebraic space smooth over $k$.
Then $X$ is a regular algebraic space.
\end{lemma}
\begin{proof}
Choose a scheme $U$ and a surjective \'etale morphism $U \to X$.
The morphism $U \to \Spec(k)$ is smooth as a composition of
an \'etale (hence smooth) morphism and a smooth morphism (see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-etale-smooth}
and \ref{spaces-morphisms-lemma-composition-smooth}).
Hence $U$ is regular by
Varieties, Lemma \ref{varieties-lemma-smooth-regular}.
By
Properties of Spaces, Definition
\ref{spaces-properties-definition-type-property}
this means that $X$ is regular.
\end{proof}
\begin{lemma}
\label{lemma-smooth-separable-closed-points-dense}
Let $k$ be a field. Let $X$ be an algebraic space smooth over $\Spec(k)$.
The set of $x \in |X|$ which are image of morphisms $\Spec(k') \to X$
with $k' \supset k$ finite separable is dense in $|X|$.
\end{lemma}
\begin{proof}
Choose a scheme $U$ and a surjective \'etale morphism $U \to X$.
The morphism $U \to \Spec(k)$ is smooth as a composition of
an \'etale (hence smooth) morphism and a smooth morphism (see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-etale-smooth}
and \ref{spaces-morphisms-lemma-composition-smooth}).
Hence we can apply Varieties, Lemma
\ref{varieties-lemma-smooth-separable-closed-points-dense} to see that
the closed points of $U$ whose residue fields are finite separable over
$k$ are dense. This implies the lemma by our definition of the
topology on $|X|$.
\end{proof}
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}