-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFEMVirtMatrix.h
213 lines (184 loc) · 7.39 KB
/
FEMVirtMatrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
BSD 2-Clause License
Copyright (c) 2020, Andrey Kudryavtsev ([email protected])
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <iostream>
#include <assert.h>
#include "Types.h"
#include "Allocator.h"
// printout progress
extern bool progressprint;
/**
Banded matrix (maybe non-symmetric). Essentially this is mapping from [i,j],
i - row, counted from top to bottom, j - column.
Matrix is stored by row parts within the band. Band itself is rounded to
4 float values or 2 double values to facilitate SIMD operations. It also
stores both asymmetric and symmetric parts. That is,
XXXXDXXX is one-row representaton for band width 1 (pure diagonal) 2,3 or 4
symmetric band widths.
Maximum order of matrix is defined by shared memory available, e.g. this
is 2GB for a 2GB computer with 1GB memory free. It means a banded matrix
50000x5000 of doubles or 70000x7000 of floats is possible.
*/
template <class T> class BandedMatrix
{
public:
// memory to hold big matrix
Allocator *mem = nullptr;
// memory allocated?
bool OK;
// matrix order
size_t height;
// original half band width, including diagonal
size_t bandwidth;
// half band width, rounded up to 4 for
// floats and to 2 for doubles (including
// diagonal)
size_t ebandwidth;
// full width (ebandwidth * 2)
size_t width;
// constructors
BandedMatrix() : OK(false),bandwidth(0),height(0),
ebandwidth(0),width(0)
{
}
// n - matrix order, bandwidth -
// original bandwidth (including diagonal)
BandedMatrix(Allocator* pmem, size_t n, size_t pbandwidth);
// destructor
~BandedMatrix()
{
}
// SET/GET
// get element address; i,j are positions in GLOBAL
// square matrix, each being in the range
// 0..(height - 1)
T *getElement(size_t i, size_t j);
// set element (no checks on i,j, be careful)
void setElement(size_t i, size_t j, T value);
// add to element value (no checks on i,j, be careful)
void addToElement(size_t i, size_t j, T value);
// k = i * N + j (i,j are for square matrix)
T *operator[](size_t k);
// change equation to all zeroes and 1.0 at diagonal
void degenerateEquation(size_t index);
};
template <class T> class FEMVirtMatrix : public BandedMatrix<T>
{
public:
// CONSTRUCTION/DESTRUCTION
// constructor; n is number of unknowns,
// bandwidth is half band width plus 1
FEMVirtMatrix() : BandedMatrix()
{
}
FEMVirtMatrix(Allocator* pmem, size_t n, size_t bandwidth) : BandedMatrix<T>(pmem,n,bandwidth)
{
}
// destructor
~FEMVirtMatrix()
{
}
// SOLVER
// solve system by Gauss elimination;
// system matrix IS SPOILT; use StoreMatrix()/RestoreMatrix()
// to avoid the problem; returns false if close to zero
// pivot is encountered
bool solveSystem(T *B, T zero, int numthreads);
// simple slow straightforward solution; use for
// testing only
bool solveSystemSimple(T *B, T zero);
// MATRIX MULTIPLIER
// use it to e.g. check residuals after solution
// multiply matrix by vector V with the result in R;
// vectors V and R MUST BE 4 FLOATS (2 DOUBLES)
// LONGER than the order of the matrix, with the
// rest filled by zeroes
bool multiply(T *V, T *R, int numthreads);
// AUX : STORE/RESTORE MATRIX
// store matrix
bool storeMatrix();
// restore matrix
bool restoreMatrix(bool freestored);
};
template <class T> bool FEMVirtMatrix<T>::storeMatrix()
{
return BandedMatrix<T>::mem->storeCopy("FEMVirtMatrix.bin");
}
template <class T> bool FEMVirtMatrix<T>::restoreMatrix(bool freestored)
{
return BandedMatrix<T>::mem->restoreCopy(freestored);
}
template <class T>
bool FEMVirtMatrix<T>::solveSystemSimple(T *B, T zero)
{
LINT K,K1,J,I,Ie,Je;
T AKK;
LINT N = static_cast<LINT>(BandedMatrix<T>::height);
LINT MB = static_cast<LINT>(BandedMatrix<T>::bandwidth) - 1;
for (K = 0; K < N; K++)
{
if (progressprint && K % 100 == 0)
{
std::cout << K << " of " << N << "\r";
}
K1 = K + 1;
AKK = *BandedMatrix<T>::getElement(K,K);
if (fabs(AKK) < zero)
{
return false;
}
B[K] /= AKK;
if (K == (N-1))
break;
Je = K1 + MB; if (Je > (N - 1)) Je = N - 1;
for (J = K1; J <= Je; J++)
{
*BandedMatrix<T>::getElement(K,J) /= AKK; // *this[K,J] /= AKK
Ie = K1 + MB; if (Ie > (N - 1)) Ie = N - 1;
for (I = K1; I <= Ie; I++)
{
*BandedMatrix<T>::getElement(I,J) -= (*BandedMatrix<T>::getElement(I,K) * (*BandedMatrix<T>::getElement(K,J))); // *this[I,J] -= *this[I,K] * *this[K,J]
};
B[J] -= (*BandedMatrix<T>::getElement(J,K) * B[K]);
}
}
if (progressprint)
std::cout << std::endl;
for (;;)
{
K1 = K;
K -= 1;
if (K < 0) break;
LINT K2 = K1 + MB;
if (K2 > (N - 1)) K2 = N - 1;
for (J = K1; J <= K2; J++)
{
B[K] -= (*BandedMatrix<T>::getElement(K,J) * B[J]);
}
}
return true;
}
/** Fast SIMD subtraction of floats arbitrarily aligned,
v0 = v0 - v1, size must be % 4 = 0 for floats
and % 2 = 0 for doubles */
template <class T> void vectorsSubtract(T* v0, T* v1, size_t length);