|
| 1 | +from datasets import load_dataset |
| 2 | +from tabulate import tabulate |
| 3 | + |
| 4 | +from fmeval.eval_algorithms.qa_accuracy import QAAccuracy, QAAccuracyConfig |
| 5 | + |
| 6 | +import random |
| 7 | +import boto3 |
| 8 | +import botocore |
| 9 | +from botocore.client import Config |
| 10 | +import json |
| 11 | +import pandas as pd |
| 12 | + |
| 13 | +import plotly.express as px |
| 14 | + |
| 15 | +def huggingFaceDatasetDownloader(download_file_path): |
| 16 | + # Load the dataset from HuggingFace |
| 17 | + dataset = load_dataset("databricks/databricks-dolly-15k") |
| 18 | + df = dataset["train"].to_pandas() |
| 19 | + |
| 20 | + # Display the first records |
| 21 | + #print(tabulate(df.head(1), headers='keys', tablefmt='psql')) |
| 22 | + |
| 23 | + record_count = len(df) |
| 24 | + print("Record count:", record_count) |
| 25 | + |
| 26 | + # Group by category column and display the count for each category |
| 27 | + category_counts = df.groupby("category").size().reset_index(name='count') |
| 28 | + print("Category Counts:") |
| 29 | + print(tabulate(category_counts, headers='keys', tablefmt='psql')) |
| 30 | + |
| 31 | + # Save the DataFrame as a CSV file |
| 32 | + df.to_csv(download_file_path, index=False) |
| 33 | + return df |
| 34 | + |
| 35 | +def invokeMetaLlama3Model(df, random_sample_count): |
| 36 | + random_records = random.sample(range(len(df)), random_sample_count) |
| 37 | + df_sample = df.iloc[random_records].copy() |
| 38 | + df_sample['prompt'] = "" |
| 39 | + df_sample['metaLlama3Response'] = "" |
| 40 | + |
| 41 | + bedrock_runtime = boto3.client('bedrock-runtime', config=Config(read_timeout=500)) |
| 42 | + |
| 43 | + count = 0 |
| 44 | + for index, row in df_sample.iterrows(): |
| 45 | + count += 1 |
| 46 | + print(f"Processing the request for Llama3 Model: {count}") |
| 47 | + instruction = row['instruction'] |
| 48 | + context = row['context'] |
| 49 | + category = row['category'] |
| 50 | + |
| 51 | + prompt = f""" |
| 52 | + Category: {category} |
| 53 | + Instruction: {instruction} |
| 54 | + Context: {context} |
| 55 | +
|
| 56 | + Please provide a precise response to the instruction and context based on the category. |
| 57 | +
|
| 58 | + """ |
| 59 | + try: |
| 60 | + body = json.dumps({"prompt": prompt, "max_gen_len":200, "temperature":0.5, "top_p":0.9}) |
| 61 | + modelId = "meta.llama3-70b-instruct-v1:0" |
| 62 | + accept = "application/json" |
| 63 | + contentType = "application/json" |
| 64 | + |
| 65 | + response = bedrock_runtime.invoke_model( |
| 66 | + body=body, modelId=modelId, accept=accept, contentType=contentType |
| 67 | + ) |
| 68 | + response_body = json.loads(response.get("body").read()).get("generation") |
| 69 | + |
| 70 | + #print(response_body) |
| 71 | + df_sample.at[index, 'prompt'] = prompt |
| 72 | + df_sample.at[index, 'metaLlama3Response'] = response_body |
| 73 | + |
| 74 | + except botocore.exceptions.ClientError as error: |
| 75 | + if error.response['Error']['Code'] == 'AccessDeniedException': |
| 76 | + print(f"\x1b[41m{error.response['Error']['Message']} \ |
| 77 | + \nTo troubeshoot this issue please refer to the following resources.\ |
| 78 | + \nhttps://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_access-denied.html\ |
| 79 | + \nhttps://docs.aws.amazon.com/bedrock/latest/userguide/security-iam.html\x1b[0m\n") |
| 80 | + |
| 81 | + else: |
| 82 | + raise error |
| 83 | + return df_sample |
| 84 | + |
| 85 | +def invokeAnthropicModel(df_sample, response_file_path): |
| 86 | + df_sample['anthropicResponse'] = "" |
| 87 | + |
| 88 | + bedrock_runtime = boto3.client('bedrock-runtime', config=Config(read_timeout=500)) |
| 89 | + |
| 90 | + count = 0 |
| 91 | + for index, row in df_sample.iterrows(): |
| 92 | + count += 1 |
| 93 | + print(f"Processing the request for Anthropic Model: {count}") |
| 94 | + instruction = row['instruction'] |
| 95 | + context = row['context'] |
| 96 | + category = row['category'] |
| 97 | + |
| 98 | + prompt = f""" |
| 99 | + Category: {category} |
| 100 | + Instruction: {instruction} |
| 101 | + Context: {context} |
| 102 | +
|
| 103 | + Please provide a precise response to the instruction and context based on the category. |
| 104 | +
|
| 105 | + """ |
| 106 | + try: |
| 107 | + messages=[{ "role":'user', "content":[{'type':'text','text': prompt}]}] |
| 108 | + body = json.dumps({"anthropic_version": "bedrock-2023-05-31", "max_tokens": 200, "messages": messages, "temperature": 0.5, "top_p": 0.9}) |
| 109 | + modelId = "anthropic.claude-3-sonnet-20240229-v1:0" |
| 110 | + accept = "application/json" |
| 111 | + contentType = "application/json" |
| 112 | + |
| 113 | + response = bedrock_runtime.invoke_model( |
| 114 | + body=body, modelId=modelId, accept=accept, contentType=contentType |
| 115 | + ) |
| 116 | + response_body = json.loads(response.get('body').read()) |
| 117 | + response_text = response_body.get('content')[0]['text'] |
| 118 | + |
| 119 | + #print(response_text) |
| 120 | + df_sample.at[index, 'anthropicResponse'] = response_text |
| 121 | + |
| 122 | + except botocore.exceptions.ClientError as error: |
| 123 | + if error.response['Error']['Code'] == 'AccessDeniedException': |
| 124 | + print(f"\x1b[41m{error.response['Error']['Message']}\ |
| 125 | + \nTo troubeshoot this issue please refer to the following resources.\ |
| 126 | + \nhttps://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_access-denied.html\ |
| 127 | + \nhttps://docs.aws.amazon.com/bedrock/latest/userguide/security-iam.html\x1b[0m\n") |
| 128 | + |
| 129 | + else: |
| 130 | + raise error |
| 131 | + df_sample.to_json(response_file_path, orient='records', lines="true") |
| 132 | + return df_sample |
| 133 | + |
| 134 | + |
| 135 | +def modelEvaluator(model_name, model_output_attribute, model_output_file, evaluator_response_file): |
| 136 | + config = DataConfig( |
| 137 | + dataset_name = model_name, |
| 138 | + dataset_uri = model_output_file, |
| 139 | + dataset_mime_type = MIME_TYPE_JSONLINES, |
| 140 | + model_input_location = "instruction", |
| 141 | + target_output_location = "response", |
| 142 | + model_output_location = model_output_attribute |
| 143 | + ) |
| 144 | + |
| 145 | + # Configure and run QAAccuracy evaluation |
| 146 | + qa_eval = QAAccuracy(QAAccuracyConfig(target_output_delimiter="<OR>")) |
| 147 | + results = qa_eval.evaluate(dataset_config=config, save=True) |
| 148 | + #print(json.dumps(results, default=vars, indent=4)) |
| 149 | + with open(evaluator_response_file, 'w') as f: |
| 150 | + json.dump(results, f, default=lambda c: c.__dict__) |
| 151 | + print(f'Results saved to {evaluator_response_file}') |
| 152 | + return results |
| 153 | + |
| 154 | + |
| 155 | +def load_results(model_names, evaluator_response_folder): |
| 156 | + accuracy_results = [] |
| 157 | + for model_name in model_names: |
| 158 | + file = f'{evaluator_response_folder}/{model_name}.json' |
| 159 | + with open(file, 'r') as f: |
| 160 | + res = json.load(f) |
| 161 | + for accuracy_eval in res: |
| 162 | + for accuracy_scores in accuracy_eval["dataset_scores"]: |
| 163 | + accuracy_results.append( |
| 164 | + {'model': model_name, 'evaluation': 'accuracy', 'dataset': accuracy_eval["dataset_name"], |
| 165 | + 'metric': accuracy_scores["name"], 'value': accuracy_scores["value"]}) |
| 166 | + |
| 167 | + accuracy_results_df = pd.DataFrame(accuracy_results) |
| 168 | + return accuracy_results_df |
| 169 | + |
| 170 | + |
| 171 | +def visualize_radar(results_df, plotfilePath, dataset): |
| 172 | + if dataset == 'all': |
| 173 | + mean_across_datasets = results_df.drop('evaluation', axis=1).groupby(['model', 'metric']).describe()['value']['mean'] |
| 174 | + results_df = pd.DataFrame(mean_across_datasets).reset_index().rename({'mean':'value'}, axis=1) |
| 175 | + else: |
| 176 | + results_df = results_df[results_df['dataset'] == dataset] |
| 177 | + |
| 178 | + fig = px.line_polar(results_df, r='value', theta='metric', color='model', line_close=True) |
| 179 | + xlim = 1 |
| 180 | + fig.update_layout( |
| 181 | + polar=dict( |
| 182 | + radialaxis=dict( |
| 183 | + visible=True, |
| 184 | + range=[0, xlim], |
| 185 | + )), |
| 186 | + margin=dict(l=150, r=0, t=100, b=80) |
| 187 | + ) |
| 188 | + |
| 189 | + title = 'Average Performance over databricks/databricks-dolly-15k' if dataset == 'all' else dataset |
| 190 | + fig.update_layout( |
| 191 | + title=dict(text=title, font=dict(size=20), yref='container') |
| 192 | + ) |
| 193 | + fig.show() |
| 194 | + fig.write_image(plotfilePath) |
| 195 | + |
| 196 | + |
| 197 | +def main(): |
| 198 | + user_dir = "/home/sagemaker-user/" |
| 199 | + models = ["Meta_Llama3_70b_Instruct", "Anthropic_Claude_3_Sonnet"] |
| 200 | + random_sample_count = 3000 |
| 201 | + |
| 202 | + df = huggingFaceDatasetDownloader(user_dir + "databricks-dolly-15k.csv") |
| 203 | + df_sample = invokeMetaLlama3Model(df, random_sample_count) |
| 204 | + df_sample = invokeAnthropicModel(df_sample, user_dir + "response.json") |
| 205 | + modelEvaluator(models[0], "metaLlama3Response", user_dir + "response.json", user_dir + f"{models[0]}.json") |
| 206 | + modelEvaluator(models[1], "anthropicResponse", user_dir + "response.json", user_dir + f"{models[1]}.json") |
| 207 | + |
| 208 | + results_df = load_results(models, user_dir) |
| 209 | + visualize_radar(results_df, user_dir + "modelEvaluvationPlot.pdf", dataset='all') |
| 210 | + |
| 211 | +if __name__ == '__main__': |
| 212 | + main() |
0 commit comments