-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.py
357 lines (252 loc) · 14.6 KB
/
NeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
######
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
from keras.optimizers import SGD
from keras.optimizers import Adam
from keras.optimizers import Adamax
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.models import load_model
from keras.models import model_from_json
import numpy as np
import random
##################################### neural network function
global reply_memory_inputs, reply_memory_outputs, reply_memory_index, reply_memory_counter, Reply_Memory_On, Reply_Memory_New_On, reply_memory_previous_state, reply_memory_previous_action,reply_memory_current_state, reply_memory_reward,reply_memory_outputs_updated
'''
reply_memory_inputs=np.zeros((32,400), dtype=np.float32) # memroy based policy, for ultrasonics
reply_memory_outputs=np.zeros((32,3), dtype=np.float32) #five actions and one action value
reply_memory_previous_states=np.zeros((50000,400), dtype=np.float32) # memroy based policy, for 3 ultrasonic
reply_memory_previous_actions=np.zeros((50000,1), dtype=np.int16)
reply_memory_current_states=np.zeros((50000,400), dtype=np.float32) #memory based policy
reply_memory_rewards=np.zeros((50000,1), dtype=np.int16)
reply_memory_q_values=np.zeros((50000,3), dtype=np.float32) #five actions and one action value
selected_reply_memory_previous_states=np.zeros((32,400), dtype=np.float32) # memroy based policy, for 3 ultrasonic
selected_reply_memory_previous_actions=np.zeros((32,1), dtype=np.int16)
selected_reply_memory_current_states=np.zeros((32,400), dtype=np.float32) #memory based policy
selected_reply_memory_rewards=np.zeros((32,1), dtype=np.int16)
selected_reply_memory_q_values=np.zeros((32,3), dtype=np.float32) #five actions and one action value
'''
#changing the types of the memory replay because of the memory from float byte
reply_memory_inputs=np.zeros((32,640), dtype=np.float32) # memroy based policy, for ultrasonics
reply_memory_outputs=np.zeros((32,3), dtype=np.float32) #five actions and one action value
reply_memory_previous_states=np.zeros((50000,640), dtype=np.float32) # memroy based policy, for 3 ultrasonic
reply_memory_previous_actions=np.zeros((50000,1), dtype=np.uint8)
reply_memory_current_states=np.zeros((50000,640), dtype=np.float32) #memory based policy
reply_memory_rewards=np.zeros((50000,1), dtype=np.int16)
reply_memory_q_values=np.zeros((50000,3), dtype=np.float16) #five actions and one action value
selected_reply_memory_previous_states=np.zeros((32,640), dtype=np.float32) # memroy based policy, for 3 ultrasonic
selected_reply_memory_previous_actions=np.zeros((32,1), dtype=np.uint8)
selected_reply_memory_current_states=np.zeros((32,640), dtype=np.float32) #memory based policy
selected_reply_memory_rewards=np.zeros((32,1), dtype=np.int16)
selected_reply_memory_q_values=np.zeros((32,3), dtype=np.float16) #five actions and one action value
reply_memory_index=0
reply_memory_counter=0
def train_3actions_DepthP1(model, state, state_action_value_list, action, current_state, reward, epsilon, Reply_Memory_On, Reply_Memory_New_On, Reply_Memory_New_On_Update,Alpha,Lambda, Gamma):
global reply_memory_inputs, reply_memory_outputs, reply_memory_index, reply_memory_counter, reply_memory_previous_state, reply_memory_previous_action, reply_memory_current_state, reply_memory_reward, reply_memory_outputs_updated
state_action_value_list=state_action_value_list
#print(state)
#print(action)
#print(state_action_value)
#print("Reply Memory On: ", Reply_Memory_On)
#print("Reply Memory New On: ", Reply_Memory_New_On)
#Reply_Memory_New_On=False
### regarding the reply memory
if (Reply_Memory_On == False):
#model.fit(reply_memory_inputs[reply_memory_index, :].reshape(1, 4, 60, 80),
# reply_memory_outputs[reply_memory_index, :].reshape(1, 3), nb_epoch=50,
# batch_size=1, verbose=0)
model.train_on_batch(reply_memory_inputs[reply_memory_index, :].reshape(1, 640),
reply_memory_outputs[reply_memory_index, :].reshape(1, 3))
elif(Reply_Memory_On==True and Reply_Memory_New_On==False):
#print("Reply Memory")
if (reply_memory_counter < 32):
reply_memory_counter = reply_memory_counter + 1
reply_memory_inputs[reply_memory_index] = state.reshape(640)
reply_memory_outputs[reply_memory_index]=state_action_value_list
#model.fit(reply_memory_inputs[0:reply_memory_counter, :].reshape(reply_memory_counter,4, 60, 80),
# reply_memory_outputs[0:reply_memory_counter, :].reshape(reply_memory_counter, 3), nb_epoch=50,
# batch_size=reply_memory_counter, verbose=0)
model.train_on_batch(reply_memory_inputs[0:reply_memory_counter, :].reshape(reply_memory_counter,640),
reply_memory_outputs[0:reply_memory_counter, :].reshape(reply_memory_counter, 3))
reply_memory_index = reply_memory_index + 1
if (reply_memory_index > 31):
reply_memory_index = 0
#print("State in reply memory: ", reply_memory_inputs[reply_memory_index])
#print("State in reply memory: ", reply_memory_outputs[reply_memory_index])
elif (Reply_Memory_On==True and Reply_Memory_New_On == True):
print "Reply Memory New",
if (reply_memory_counter < 50000):
reply_memory_counter = reply_memory_counter + 1
#extra section for memory reply
#we try to update the values with the correct one before updating
reply_memory_previous_states[reply_memory_index]=state.reshape(640)
reply_memory_previous_actions[reply_memory_index] = action
reply_memory_current_states[reply_memory_index] = current_state.reshape(640)
reply_memory_rewards[reply_memory_index] = reward
reply_memory_q_values[reply_memory_index] = state_action_value_list
if(reply_memory_counter>31):
#random_numbers = random.sample(range(0, 50000), 31)
random_numbers = random.sample(range(0, reply_memory_counter), 31)
for i in range(0, 31):
#print("Random Number: %s" %random_numbers[i])
selected_reply_memory_previous_states[i] = reply_memory_previous_states[random_numbers[i]].reshape(640)
selected_reply_memory_previous_actions[i] = reply_memory_previous_actions[random_numbers[i]]
selected_reply_memory_rewards[i] = reply_memory_rewards[random_numbers[i]]
selected_reply_memory_current_states[i] = reply_memory_current_states[random_numbers[i]].reshape(640)
selected_reply_memory_q_values[i] = reply_memory_q_values[random_numbers[i]]
elif(reply_memory_counter<31):
i=0
counter=0
while(i<31):
#print("counter: %s" %counter)
#print("I: %s" %i)
selected_reply_memory_previous_states[i] = reply_memory_previous_states[counter].reshape(640)
selected_reply_memory_previous_actions[i] = reply_memory_previous_actions[counter]
selected_reply_memory_rewards[i] = reply_memory_rewards[counter]
selected_reply_memory_current_states[i] = reply_memory_current_states[counter].reshape(640)
selected_reply_memory_q_values[i] = reply_memory_q_values[counter]
counter = counter + 1
if(counter>=reply_memory_counter):
counter=0
i=i+1
if(Reply_Memory_New_On_Update==True):
for r in range(0,31):
#randomly selecting among
#i=0
#while(i<31):
# random_number = np.random.randint(0, 320) # we have three actions so we choose between them
#updating values
#Initialization
previous_state = selected_reply_memory_previous_states[r].reshape(640)
previous_action=selected_reply_memory_previous_actions[r]
reward=selected_reply_memory_rewards[r]
current_state = selected_reply_memory_current_states[r].reshape(640)
#print("Previous State: ")
#print(previous_state)
#print("Previous Action: ")
#print(previous_action)
#print("Current State: ")
#print(current_state)
#print("Reward: ")
#print(reward)
previous_action_values=predict_3actions_DepthP1(model,previous_state)
current_action_values = predict_3actions_DepthP1(model, current_state)
new_action=0
QLearning=True
if(QLearning==True):
###### Q Learning
new_action = (np.argmax(current_action_values))
else: ###### SARSA
if (random.random() < epsilon): # choose random action (Random==True):#
new_action = np.random.randint(0, 3) # we have three actions so we choose between them
else: # choose best action from Q(s,a) values
new_action = (np.argmax(current_action_values))
new_action_value = current_action_values[0][new_action]
previous_action_value = previous_action_values[0][previous_action]
previous_action_new_value=previous_action_value+Alpha*(reward + Gamma*(new_action_value)-previous_action_value)
previous_action_values[0][previous_action]=previous_action_new_value
selected_reply_memory_q_values[r] = previous_action_values#multiplication by 2 is because of dropout
#print("X-Previous Action Values: %s" %previous_action_values)
#add all the state for update
reply_memory_inputs[:]=selected_reply_memory_previous_states[:]
reply_memory_outputs[:]=selected_reply_memory_q_values[:]
# add the current state
reply_memory_inputs[31]=state
reply_memory_outputs[31]=state_action_value_list
#print("Reply Memory Outputs: %s" %reply_memory_outputs)
#model.fit(reply_memory_inputs[0:100, :].reshape(100,4, 60, 80),
# reply_memory_outputs[0:100, :].reshape(100, 3), nb_epoch=100,
# batch_size=100, verbose=0)
model.train_on_batch(reply_memory_inputs[0:32, :].reshape(32,640),
reply_memory_outputs[0:32, :].reshape(32, 3))
reply_memory_index = reply_memory_index + 1
if (reply_memory_index > 49999):
reply_memory_index = 0
return model
def predict_3actions_DepthP1(model, state):
return model.predict(state.reshape(1,640), batch_size=1)
def create_model():
print("creating model...")
print("K image dim ordering: %s" % (K.image_dim_ordering(),))
img_rows = 60
img_cols = 80
if K.image_dim_ordering() == 'th':
input_shape = (4, img_rows, img_cols)
else:
input_shape = (img_rows, img_cols, 4)
model = Sequential()
# this was good for normal reward for three sensor
#model.add(Convolution2D(32, 8, 8, border_mode='valid', subsample=(4, 4), input_shape=input_shape))
#model.add(Activation('relu'))
##model.add(MaxPooling2D(pool_size=(2, 2)))
## model.add(Dropout(0.5))
#model.add(Convolution2D(64, 4, 4, subsample=(2, 2)))
#model.add(Activation('relu'))
##model.add(MaxPooling2D(pool_size=(2, 2)))
## model.add(Dropout(0.5))
#model.add(Convolution2D(64, 3, 3, subsample=(1, 1)))
#model.add(Activation('relu'))
##model.add(MaxPooling2D(pool_size=(2, 2)))
## model.add(Dropout(0.5))
##model.add(Convolution2D(64, 3, 3))
##model.add(Activation('relu'))
##model.add(MaxPooling2D(pool_size=(2, 2)))
## model.add(Dropout(0.5))
## model.add(Dense(50, input_shape=(80,60), init='zero', activation='linear'))
## model.add(Dropout(0.5))
#model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(512, input_dim=640, init='normal', activation='relu'))
model.add(Dense(256, init='normal', activation='relu'))
#model.add(Dense(1000, init='normal', activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(3, init='normal', activation='linear'))
# model.add(Dropout(0.5))
'''
# this was good for normal reward for three sensor
model.add(Convolution2D(16, 8, 8, border_mode='valid', subsample=(1, 1), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.5))
model.add(Convolution2D(32, 4, 4, subsample=(1, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.5))
#model.add(Convolution2D(64, 3, 3))
#model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.5))
# model.add(Dense(50, input_shape=(80,60), init='zero', activation='linear'))
# model.add(Dropout(0.5))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(256, init='normal', activation='relu'))
#model.add(Dense(1000, init='normal', activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(3, init='normal', activation='linear'))
# model.add(Dropout(0.5))
#
'''
# print(model.summary())
# print(model.optimizer[0])
#adamax = Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) # learning rate (default) = 0.002
rms = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
# model.compile(loss='mse', optimizer=adamax)
model.compile(loss='mse', optimizer=rms)
print("model created...X")
return model
def load_model(filename_str):
print("load and train the model...")
# load json and create model
json_file = open(filename_str + '.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
# load weights into new model
model.load_weights(filename_str + ".h5")
adamax = Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08,
decay=0.0) # learning rate (default) = 0.002
rms = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
model.compile(loss='mse', optimizer=rms)
print("Loaded model from disk")
return model