-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPallets.R
112 lines (95 loc) · 4.43 KB
/
Pallets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# 06-Octubre-2024
# Uso de paletas de color en ggplot
# Prof:Aline Pingarroni
# Taller Introduccion al lenguaje R
#https://r-charts.com/es/paletas-colores/
#https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
#https://r-graph-gallery.com/color-palette-finder
#https://www.blakerobertmills.com/my-work/met-brewer
# Cargar librerías necesarias
library(ggplot2)
library(dplyr). # Manejo de datos
library(viridis) # Paquete viridis para paletas de colores
# Cargar la base de datos msleep y realizar las transformaciones
msleep <- msleep %>%
mutate(logSleepawake = log(sleep_total / awake),
logBodywt = log(bodywt),
logBrainwt = log(brainwt)) %>%
filter(!is.na(logSleepawake), !is.na(logBodywt), !is.na(logBrainwt))
# 1. Usar terrain.colors() en la estética de color
p1 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = logBrainwt)) +
geom_point(size = 3) +
scale_colour_gradientn(colours = terrain.colors(20)) + # Usar terrain.colors
labs(title = "Paleta terrain.colors() aplicada a logBrainwt")
print(p1)
# 2. Usar heat.colors() en la estética de relleno
p2 <- ggplot(msleep, aes(x = vore, y = logSleepawake, fill = vore)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = heat.colors(length(unique(msleep$vore)))) + # Usar heat.colors
labs(title = "Paleta heat.colors() aplicada a vore")
print(p2)
# 3. Usar topo.colors() en la estética de color
p3 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = logBrainwt)) +
geom_point(size = 3) +
scale_colour_gradientn(colours = topo.colors(10)) + # Usar topo.colors
labs(title = "Paleta topo.colors() aplicada a logBrainwt")
print(p3)
# 4. Usar cm.colors() en la estética de relleno
p4 <- ggplot(msleep, aes(x = vore, y = logSleepawake, fill = vore)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = cm.colors(length(unique(msleep$vore)))) + # Usar cm.colors
labs(title = "Paleta cm.colors() aplicada a vore")
print(p4)
# 5. Usar rainbow() en la estética de color
p5 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = logBrainwt)) +
geom_point(size = 3) +
scale_colour_gradientn(colours = rainbow(10)) + # Usar rainbow
labs(title = "Paleta rainbow() aplicada a logBrainwt")
print(p5)
# 6. Crear una paleta manual y aplicarla
unique(msleep$vore)
manual_palette <- c("carni" = "darkred", "herbi" = "forestgreen",
"omni" = "blue", "insecti" = "purple")
manual_palette <- c("darkred","forestgreen","blue","purple")
p6 <- ggplot(msleep, aes(x = vore, y = logSleepawake, fill = vore)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = manual_palette) + # Aplicar paleta manual
labs(title = "Paleta manual aplicada a vore")
print(p6)
############Viridis############
# 1. Usar viridis en una escala continua
p1 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = logSleepawake)) +
geom_point(size = 3) +
scale_colour_viridis(option = "D", direction = -1) + # Paleta continua viridis
labs(title = "Paleta viridis continua con logSleepawake")
print(p1)
# 2. Usar viridis en una escala discreta
p2 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = vore)) +
geom_point(size = 3) +
scale_colour_viridis(discrete = TRUE, option = "C") + # Paleta discreta viridis
labs(title = "Paleta viridis discreta con vore")
print(p2)
msleep_clean <- msleep %>%
filter(!is.na(vore))
unique(msleep_clean$vore)
# 3. Usar viridis para escala de relleno
p3 <- ggplot(msleep_clean, aes(x = vore, y = logSleepawake, fill = vore)) +
geom_bar(stat = "identity") +
scale_fill_viridis(discrete = TRUE, option = "A") + # Paleta discreta viridis para fill
labs(title = "Paleta viridis aplicada al relleno (fill)")
print(p3)
# 4. Usar viridis para escala binned
p4 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = cut_interval(logBrainwt, n = 5))) +
geom_point(size = 3) +
scale_colour_viridis(discrete = TRUE, option = "B", direction = -1) + # Usar viridis con colores discretos
labs(title = "Paleta viridis binned con logBrainwt (grupos)") +
theme_minimal()
print(p4)
# 5. Usar viridis en combinación con facetas y leyenda personalizada
p5 <- ggplot(msleep, aes(x = logBodywt, y = logSleepawake, colour = logSleepawake)) +
geom_point(size = 3) +
facet_wrap(~ vore) +
scale_colour_viridis(option = "C") + # Paleta continua viridis
theme(legend.position = "bottom") + # Leyenda en la parte inferior
labs(title = "Paleta viridis con facetas por vore")
print(p5)