forked from AMReX-Codes/amrex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAMReX_MLNodeTensorLaplacian.cpp
346 lines (304 loc) · 11.2 KB
/
AMReX_MLNodeTensorLaplacian.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#include <AMReX_MLNodeTensorLaplacian.H>
#include <AMReX_MLNodeLinOp_K.H>
#include <AMReX_MLNodeTensorLap_K.H>
#include <AMReX_MultiFabUtil.H>
namespace amrex {
MLNodeTensorLaplacian::MLNodeTensorLaplacian (const Vector<Geometry>& a_geom,
const Vector<BoxArray>& a_grids,
const Vector<DistributionMapping>& a_dmap,
const LPInfo& a_info)
{
define(a_geom, a_grids, a_dmap, a_info);
}
void
MLNodeTensorLaplacian::setSigma (Array<Real,nelems> const& a_sigma) noexcept
{
for (int i = 0; i < nelems; ++i) { m_sigma[i] = a_sigma[i]; }
}
void
MLNodeTensorLaplacian::setBeta (Array<Real,AMREX_SPACEDIM> const& a_beta) noexcept // NOLINT(readability-convert-member-functions-to-static)
{
#if (AMREX_SPACEDIM == 1)
amrex::ignore_unused(a_beta);
#elif (AMREX_SPACEDIM == 2)
m_sigma[0] = Real(1.) - a_beta[0]*a_beta[0];
m_sigma[1] = - a_beta[0]*a_beta[1];
m_sigma[2] = Real(1.) - a_beta[1]*a_beta[1];
#elif (AMREX_SPACEDIM == 3)
m_sigma[0] = Real(1.) - a_beta[0]*a_beta[0];
m_sigma[1] = - a_beta[0]*a_beta[1];
m_sigma[2] = - a_beta[0]*a_beta[2];
m_sigma[3] = Real(1.) - a_beta[1]*a_beta[1];
m_sigma[4] = - a_beta[1]*a_beta[2];
m_sigma[5] = Real(1.) - a_beta[2]*a_beta[2];
#endif
}
GpuArray<Real,MLNodeTensorLaplacian::nelems>
MLNodeTensorLaplacian::scaledSigma (int amrlev, int mglev) const noexcept
{
auto s = m_sigma;
auto const& dxinv = m_geom[amrlev][mglev].InvCellSizeArray();
#if (AMREX_SPACEDIM == 1)
amrex::ignore_unused(dxinv);
#elif (AMREX_SPACEDIM == 2)
s[0] *= dxinv[0]*dxinv[0];
s[1] *= dxinv[0]*dxinv[1];
s[2] *= dxinv[1]*dxinv[1];
#elif (AMREX_SPACEDIM == 3)
s[0] *= dxinv[0]*dxinv[0];
s[1] *= dxinv[0]*dxinv[1];
s[2] *= dxinv[0]*dxinv[2];
s[3] *= dxinv[1]*dxinv[1];
s[4] *= dxinv[1]*dxinv[2];
s[5] *= dxinv[2]*dxinv[2];
#endif
return s;
}
void
MLNodeTensorLaplacian::define (const Vector<Geometry>& a_geom,
const Vector<BoxArray>& a_grids,
const Vector<DistributionMapping>& a_dmap,
const LPInfo& a_info)
{
BL_PROFILE("MLNodeTensorLaplacian::define()");
// This makes sure grids are cell-centered;
Vector<BoxArray> cc_grids = a_grids;
for (auto& ba : cc_grids) {
ba.enclosedCells();
}
m_coarsening_strategy = CoarseningStrategy::Sigma; // This will fill nodes outside Neumann BC
MLNodeLinOp::define(a_geom, cc_grids, a_dmap, a_info);
}
void
MLNodeTensorLaplacian::restriction (int amrlev, int cmglev, MultiFab& crse, MultiFab& fine) const
{
BL_PROFILE("MLNodeTensorLaplacian::restriction()");
applyBC(amrlev, cmglev-1, fine, BCMode::Homogeneous, StateMode::Solution);
IntVect const ratio = (amrlev > 0) ? IntVect(2) : mg_coarsen_ratio_vec[cmglev-1];
int semicoarsening_dir = info.semicoarsening_direction;
bool need_parallel_copy = !amrex::isMFIterSafe(crse, fine);
MultiFab cfine;
if (need_parallel_copy) {
const BoxArray& ba = amrex::coarsen(fine.boxArray(), ratio);
cfine.define(ba, fine.DistributionMap(), 1, 0);
}
MultiFab* pcrse = (need_parallel_copy) ? &cfine : &crse;
const iMultiFab& dmsk = *m_dirichlet_mask[amrlev][cmglev-1];
#ifdef AMREX_USE_OMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
for (MFIter mfi(*pcrse, TilingIfNotGPU()); mfi.isValid(); ++mfi)
{
const Box& bx = mfi.tilebox();
Array4<Real> cfab = pcrse->array(mfi);
Array4<Real const> const& ffab = fine.const_array(mfi);
Array4<int const> const& mfab = dmsk.const_array(mfi);
if (ratio == 2) {
AMREX_HOST_DEVICE_PARALLEL_FOR_3D(bx, i, j, k,
{
mlndlap_restriction(i,j,k,cfab,ffab,mfab);
});
} else {
AMREX_HOST_DEVICE_PARALLEL_FOR_3D(bx, i, j, k,
{
mlndlap_semi_restriction(i,j,k,cfab,ffab,mfab, semicoarsening_dir);
});
}
}
if (need_parallel_copy) {
crse.ParallelCopy(cfine);
}
}
void
MLNodeTensorLaplacian::interpolation (int amrlev, int fmglev, MultiFab& fine,
const MultiFab& crse) const
{
BL_PROFILE("MLNodeTensorLaplacian::interpolation()");
IntVect const ratio = (amrlev > 0) ? IntVect(2) : mg_coarsen_ratio_vec[fmglev];
int semicoarsening_dir = info.semicoarsening_direction;
bool need_parallel_copy = !amrex::isMFIterSafe(crse, fine);
MultiFab cfine;
const MultiFab* cmf = &crse;
if (need_parallel_copy) {
const BoxArray& ba = amrex::coarsen(fine.boxArray(), ratio);
cfine.define(ba, fine.DistributionMap(), 1, 0);
cfine.ParallelCopy(crse);
cmf = &cfine;
}
const iMultiFab& dmsk = *m_dirichlet_mask[amrlev][fmglev];
#ifdef AMREX_USE_OMP
#pragma omp parallel if (Gpu::notInLaunchRegion())
#endif
for (MFIter mfi(fine, TilingIfNotGPU()); mfi.isValid(); ++mfi)
{
Box const& bx = mfi.tilebox();
Array4<Real> const& ffab = fine.array(mfi);
Array4<Real const> const& cfab = cmf->const_array(mfi);
Array4<int const> const& mfab = dmsk.const_array(mfi);
if (ratio == 2) {
AMREX_HOST_DEVICE_PARALLEL_FOR_3D(bx, i, j, k,
{
mlndtslap_interpadd(i,j,k,ffab,cfab,mfab);
});
} else {
AMREX_HOST_DEVICE_PARALLEL_FOR_3D(bx, i, j, k,
{
mlndtslap_semi_interpadd(i,j,k,ffab,cfab,mfab,semicoarsening_dir);
});
}
}
}
void
MLNodeTensorLaplacian::averageDownSolutionRHS (int camrlev, MultiFab& crse_sol, MultiFab& /*crse_rhs*/,
const MultiFab& fine_sol, const MultiFab& /*fine_rhs*/)
{
const auto& amrrr = AMRRefRatio(camrlev);
amrex::average_down(fine_sol, crse_sol, 0, 1, amrrr);
if (isSingular(0))
{
amrex::Abort("MLNodeTensorLaplacian::averageDownSolutionRHS: TODO");
}
}
void
MLNodeTensorLaplacian::reflux (int /*crse_amrlev*/,
MultiFab& /*res*/, const MultiFab& /*crse_sol*/, const MultiFab& /*crse_rhs*/,
MultiFab& /*fine_res*/, MultiFab& /*fine_sol*/, const MultiFab& /*fine_rhs*/) const
{
amrex::Abort("MLNodeTensorLaplacian::reflux: TODO");
}
void
MLNodeTensorLaplacian::prepareForSolve ()
{
BL_PROFILE("MLNodeTensorLaplacian::prepareForSolve()");
MLNodeLinOp::prepareForSolve();
buildMasks();
}
void
MLNodeTensorLaplacian::Fapply (int amrlev, int mglev, MultiFab& out, const MultiFab& in) const
{
#if (AMREX_SPACEDIM == 1)
amrex::ignore_unused(amrlev, mglev, out, in);
#else
BL_PROFILE("MLNodeTensorLaplacian::Fapply()");
auto const& s = scaledSigma(amrlev, mglev);
auto const& in_a = in.const_arrays();
auto const& out_a = out.arrays();
auto const& dmsk_a = m_dirichlet_mask[amrlev][mglev]->const_arrays();
amrex::ParallelFor(out,
[=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
{
mlndtslap_adotx(i,j,k, out_a[box_no], in_a[box_no], dmsk_a[box_no], s);
});
if (!Gpu::inNoSyncRegion()) {
Gpu::streamSynchronize();
}
#endif
}
void
MLNodeTensorLaplacian::smooth (int amrlev, int mglev, MultiFab& sol, const MultiFab& rhs,
bool skip_fillboundary) const
{
BL_PROFILE("MLNodeTensorLaplacian::smooth()");
for (int redblack = 0; redblack < 4; ++redblack) {
if (!skip_fillboundary) {
applyBC(amrlev, mglev, sol, BCMode::Homogeneous, StateMode::Correction);
}
m_redblack = redblack;
Fsmooth(amrlev, mglev, sol, rhs);
skip_fillboundary = false;
}
nodalSync(amrlev, mglev, sol);
}
void
MLNodeTensorLaplacian::Fsmooth (int amrlev, int mglev, MultiFab& sol, const MultiFab& rhs) const
{
#if (AMREX_SPACEDIM == 1)
amrex::ignore_unused(amrlev, mglev, sol, rhs);
#else
BL_PROFILE("MLNodeTensorLaplacian::Fsmooth()");
auto const& s = scaledSigma(amrlev, mglev);
auto const& sol_a = sol.arrays();
auto const& rhs_a = rhs.const_arrays();
auto const& dmsk_a = m_dirichlet_mask[amrlev][mglev]->const_arrays();
int redblack = m_redblack;
amrex::ParallelFor(sol,
[=] AMREX_GPU_DEVICE (int box_no, int i, int j, int k) noexcept
{
if ((i+j+k+redblack) % 2 == 0) {
mlndtslap_gauss_seidel(i, j, k, sol_a[box_no], rhs_a[box_no], dmsk_a[box_no], s);
}
});
if (!Gpu::inNoSyncRegion()) {
Gpu::streamSynchronize();
}
#endif
}
void
MLNodeTensorLaplacian::normalize (int amrlev, int mglev, MultiFab& mf) const
{
amrex::ignore_unused(amrlev,mglev,mf);
}
void
MLNodeTensorLaplacian::fixUpResidualMask (int /*amrlev*/, iMultiFab& /*resmsk*/)
{
amrex::Abort("MLNodeTensorLaplacian::fixUpResidualMask: TODO");
}
#if defined(AMREX_USE_HYPRE) && (AMREX_SPACEDIM > 1)
void
MLNodeTensorLaplacian::fillIJMatrix (MFIter const& mfi,
Array4<HypreNodeLap::AtomicInt const> const& gid,
Array4<int const> const& lid,
HypreNodeLap::Int* ncols,
HypreNodeLap::Int* cols,
Real* mat) const
{
const int amrlev = 0;
const int mglev = NMGLevels(amrlev)-1;
auto const& s = scaledSigma(amrlev, mglev);
const Box& ndbx = mfi.validbox();
#ifdef AMREX_USE_GPU
if (Gpu::inLaunchRegion()) {
AMREX_ALWAYS_ASSERT_WITH_MESSAGE
(static_cast<Long>(ndbx.numPts())*AMREX_D_TERM(3,*3,*3) <
static_cast<Long>(std::numeric_limits<int>::max()),
"The Box is too big. We could use Long here, but it would much slower.");
const int nmax = ndbx.numPts() * AMREX_D_TERM(3,*3,*3);
const auto ndlo = amrex::lbound(ndbx);
const auto ndlen = amrex::length(ndbx);
amrex::Scan::PrefixSum<int>
(nmax,
[=] AMREX_GPU_DEVICE (int offset) noexcept
{
Dim3 node = nodelap_detail::GetNode()(ndlo, ndlen, offset);
Dim3 node2 = nodelap_detail::GetNode2()(offset, node);
return (lid(node.x,node.y,node.z) >= 0 &&
gid(node2.x,node2.y,node2.z)
< std::numeric_limits<HypreNodeLap::AtomicInt>::max());
},
[=] AMREX_GPU_DEVICE (int offset, int ps) noexcept
{
Dim3 node = nodelap_detail::GetNode()(ndlo, ndlen, offset);
mlndtslap_fill_ijmatrix_gpu(ps, node.x, node.y, node.z, offset,
ndbx, gid, lid, ncols, cols, mat, s);
},
amrex::Scan::Type::exclusive);
} else
#endif
{
mlndtslap_fill_ijmatrix_cpu(ndbx, gid, lid, ncols, cols, mat, s);
}
}
void
MLNodeTensorLaplacian::fillRHS (MFIter const& mfi, Array4<int const> const& lid,
Real* rhs, Array4<Real const> const& bfab) const
{
const Box& bx = mfi.validbox();
AMREX_HOST_DEVICE_PARALLEL_FOR_3D(bx, i, j, k,
{
if (lid(i,j,k) >= 0) {
rhs[lid(i,j,k)] = bfab(i,j,k);
}
});
}
#endif
}