-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
112 lines (82 loc) · 3.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
import time
from datetime import timedelta
import pandas as pd
import schedule
import yfinance as yf
from strategies import *
from technical_indicators_calculator import *
from ticker_symbols import *
from utils import date_util, mail_util
def get_data_for_stock(stock_name):
try:
historical_data_yfinance = yf.Ticker(stock_name + ".NS").history(
start=date_util.getLastDate() - timedelta(days=365))
except ValueError: # includes simplejson.decoder.JSONDecodeError
print("Decoding JSON has failed", flush=True)
if historical_data_yfinance.empty:
print("Incorrect symbol: ", stock_name, flush=True)
return None
historical_data_yfinance['Date'] = historical_data_yfinance.index
historical_data_yfinance = pd.DataFrame(historical_data_yfinance, columns=['Date', 'Close'])
closing_prices = pd.Series(historical_data_yfinance['Close'], index=historical_data_yfinance.index)
company = Company(stock_name)
company.prices = closing_prices
company.technical_indicators = pd.DataFrame()
company.technical_indicators['Close'] = closing_prices
# tacp = TechnicalIndicatorsChartPlotter()
# tacp.plot_macd(company)
# tacp.plot_rsi(company)
# tacp.plot_bollinger_bands(company)
macd_diff = get_macd(company)
rsi = get_rsi(company)
company.macd_diff = macd_diff
company.rsi = rsi
return company
def analyse_stocks():
companies = []
# for stock_name in ["TEJASNET"]:
for stock_name in nseTop1000MarketCap:
print(stock_name, flush=True)
company = get_data_for_stock(stock_name)
if company is None:
continue
macd_diff = company.macd_diff
rsi = company.rsi
if macd_diff is None:
continue
if macd_diff.index[-1].date() != date_util.getLastDate():
# This doesn't work when last day was holiday.
# Todo: Check later: print(nsepy.live.getworkingdays(getLastDate() - timedelta(days=365), getLastDate()))
continue
if len(macd_diff) < 2:
print("Macd_diff length is less than 2", flush=True)
continue
companies.append(company)
strategy1_response_list = []
strategy2_response_list = []
for company in companies:
stock_name = company.symbol
macd_diff = company.macd_diff
rsi = company.rsi
strategy_1 = Strategy1(company)
strategy1_response = strategy_1.strategy1()
if strategy1_response is not None:
strategy1_response_list.append(strategy1_response)
if len(macd_diff) < 3:
continue
strategy_2 = Strategy2(company)
strategy2_response = strategy_2.strategy2()
if strategy2_response is not None:
strategy2_response_list.append(strategy2_response)
strategy1_response_list.sort(key=lambda x: x["days_since_bearish_crossover"], reverse=True)
strategy2_response_list.sort(key=lambda x: x["days_since_bearish_crossover"], reverse=True)
print(strategy1_response_list, flush=True)
print(strategy2_response_list, flush=True)
mail_util.create_and_send_mail(strategy1_response_list, 'Strategy 1')
mail_util.create_and_send_mail(strategy2_response_list, 'Strategy 2')
# Schedule everyday at 2:30 PM UTC, that is 8:00 PM IST
schedule.every().day.at("14:30").do(analyse_stocks)
while True:
schedule.run_pending()
time.sleep(60)