Skip to content

Commit f0a7638

Browse files
committed
move metrics to metrics.py
1 parent cc6b4a3 commit f0a7638

8 files changed

+15
-10
lines changed

decision_tree_classifier.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
import numpy as np
2-
from utils import generate_clusterization_data, split_data, accuracy
2+
from utils import generate_clusterization_data, split_data
3+
from metrics import accuracy
34

45

56

gradient_boosting_classifier.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
import numpy as np
22

33
from decision_tree_regressor import DecisionTreeRegressor, Node
4-
from utils import generate_clusterization_data, split_data, accuracy
4+
from utils import generate_clusterization_data, split_data
5+
from metrics import accuracy
56

67
#https://maelfabien.github.io/machinelearning/GradientBoostC/#gradient-boosting-classification-steps
78
#https://www.youtube.com/watch?v=jxuNLH5dXCs&ab_channel=StatQuestwithJoshStarmer

logistic_regression.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
import numpy as np
22
import matplotlib.pyplot as plt
33
from tqdm import tqdm
4-
from utils import generate_clusterization_data, split_data, accuracy
4+
from utils import generate_clusterization_data, split_data
5+
from metrics import accuracy
56

67

78
#https://www.python-unleashed.com/post/derivation-of-the-binary-cross-entropy-loss-gradient

roc_auc.py metrics.py

+3-2
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,11 @@
11
import numpy as np
22
import matplotlib.pyplot as plt
33
from logistic_regression import LogisticRegression
4-
from utils import generate_clusterization_data, split_data, accuracy
4+
from utils import generate_clusterization_data, split_data
55

66

7-
#In fact roc_curve cannot be considered a separate algorithm; it is an evaluation metric in binary classification problems
7+
def accuracy(targets, predictions):
8+
return np.equal(targets, predictions).mean()
89

910
def roc_сurve(y_true: np.ndarray[int], y_score: np.ndarray[float]):
1011
sorted_indices = np.argsort(y_score)[::-1]

naive_bayes_classifier.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
import numpy as np
2-
from utils import generate_clusterization_data, split_data, accuracy
2+
from utils import generate_clusterization_data, split_data
3+
from metrics import accuracy
34

45

56

random_forest_classifier.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
import numpy as np
22
from decision_tree_classifier import DecisionTreeClassifier
3-
from utils import generate_clusterization_data, split_data, accuracy
3+
from utils import generate_clusterization_data, split_data
4+
from metrics import accuracy
45

56

67
#https://en.wikipedia.org/wiki/Random_forest

svm.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
import numpy as np
22
import matplotlib.pyplot as plt
3-
from utils import generate_clusterization_data, split_data, accuracy
3+
from utils import generate_clusterization_data, split_data
4+
from metrics import accuracy
45

56

67

utils.py

-2
Original file line numberDiff line numberDiff line change
@@ -77,5 +77,3 @@ def split_data(X, y = None, ratio = 0.25):
7777
return X_train, X_test, y_train, y_test
7878

7979

80-
def accuracy(targets, predictions):
81-
return np.equal(targets, predictions).mean()

0 commit comments

Comments
 (0)