-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
130 lines (109 loc) · 5.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import json
import pandas as pd
from flask import Flask, jsonify
from tabulate import tabulate
app = Flask(__name__)
number_stations = pd.read_csv("./data/number_stations.csv")
# Print tabular data
def tabular_output(i):
print(tabulate(i, tablefmt='simple', headers=["ID", "Name", "Country", "Active Counterparts", "Inactive Counterparts", "Nickname", "Status", "Frequency", "Voice", "Emission Mode", "Location"], showindex='never'))
# List all stations
@app.route('/')
def index():
f = number_stations.to_json()
return json.loads(f)
# List all stations under the column Name
@app.route('/station_names')
def station_names():
# Filter the DataFrame columns to retrieve all stations under 'Name' column
st_name = number_stations['Name']
# If the DataFrame returns a response, convert the Series to a JSON string
f = st_name.to_json()
# Then convert the JSON string to a dict to properly format it when sending the response to the client
return json.loads(f)
# Check for active stations
@app.route('/is_active_station')
def is_active_station():
# Pass the parameter from the URL and check if it matches against an active station
active_df = number_stations[number_stations['Status'] == 'Active']
# Use tabulate to print the response to the terminal
tabular_output(active_df)
r = active_df.to_json()
return json.loads(r)
# Check for inactive stations
@app.route('/is_inactive_station')
def is_inactive_station():
# Pass the parameter from the URL and check if it matches against an inactive station
inactive_df = number_stations[number_stations['Status'] == 'Inactive']
# Use tabulate to print the response to the terminal
tabular_output(inactive_df)
r = inactive_df.to_json()
return json.loads(r)
# Filter by station names
@app.route('/filter_station_names/<name>')
def filer_station_names(name):
if name is None:
return jsonify({ 'error': 'Station name cannot be blank' })
# Pass the parameter from the URL and check if it matches against a known station name
f_name = number_stations[number_stations['Name'] == name]
# Use tabulate to print the response to the terminal
tabular_output(f_name)
# If the DataFrame returns empty, send an error back to the client
if f_name.empty:
return jsonify({ 'error': 'That station does not exist'})
# If the DataFrame returns a response, convert the Series to a JSON string
r = f_name.to_json()
# Then convert the JSON string to a dict to properly format it when sending the response to the client
return json.loads(r)
# Filter by station nicknames
@app.route('/filter_station_nickname/<nickname>')
def filer_station_nickname(nickname):
if nickname is None:
return jsonify({ 'error': 'Station nickname cannot be blank' })
# Pass the parameter from the URL and check if it matches against a known station nickname
f_nickname = number_stations[number_stations['Nickname'].str.contains(nickname)]
# Use tabulate to print the response to the terminal
tabular_output(f_nickname)
# If the DataFrame returns empty, send an error back to the client
if f_nickname.empty:
return jsonify({ 'error': 'That station does not exist'})
# If the DataFrame returns a response, convert the Series to a JSON string
r = f_nickname.to_json()
# Then convert the JSON string to a dict to properly format it when sending the response to the client
return json.loads(r)
# Filter by station id's
@app.route('/filter_by_id/<id>')
def filter_by_id(id):
if id is None:
return jsonify({ 'error': 'ID cannot be empty' })
# Pass the parameter from the URL and check if it matches against a known station id
f_id = number_stations[number_stations['ID'] == id]
# Use tabulate to print the response to the terminal
tabular_output(f_id)
# If the DataFrame returns empty, send an error back to the client
if f_id.empty:
return jsonify({ 'error': 'That ID does not exist'})
# If the DataFrame returns a response, convert the Series to a JSON string
r = f_id.to_json()
# Then convert the JSON string to a dict to properly format it when sending the response to the client
return json.loads(r)
# Filter by station locations
@app.route('/filter_by_location/<loc>')
def filter_by_location(loc):
if loc is None:
return jsonify({ 'error': 'Location cannot be empty' })
# Pass the parameter from the URL and check if it matches against a known location - 'na=False' ignores any possibly empty values in the column to avoid throwing an error
f_loc = number_stations[number_stations['Location'].str.contains(loc, na=False)]
# Use tabulate to print the response to the terminal
tabular_output(f_loc)
# If the DataFrame returns empty, send an error back to the client
if f_loc.empty:
return jsonify({ 'error': 'That location does not exist'})
# If the DataFrame returns a response, convert the Series to a JSON string
r = f_loc.to_json()
# Then convert the JSON string to a dict to properly format it when sending the response to the client
return json.loads(r)
# Catch all HTTP 404's and return the below JSON message
@app.errorhandler(404)
def route_not_found(e):
return jsonify({ "error": "The specified route does not exist" })