|
1 |
| -import os.path |
2 |
| -import numpy as np |
3 |
| -from skimage.io import imread, imsave |
4 |
| -from skimage.metrics import mean_squared_error, structural_similarity |
5 |
| -from skimage.exposure import match_histograms, rescale_intensity |
6 |
| -import ctypes |
7 |
| - |
8 |
| -""" |
9 |
| -Calculates SSIM map as a result of the comparison of 2 channels and metrics values (in the log file). |
10 |
| -
|
11 |
| -For the output image, it is highly recommended to use LUT color mapping to better see the variations in the SSIM values |
12 |
| -All real SSIM values (ranging from 0 to 1) can be retrieved from the map doing the following: divide intensities by 255 if image is 8-bit, or by 65535 if 16-bit. |
13 |
| -
|
14 |
| -Side note: MSE and mean SSIM (and NRMSE, PSNR) values are output in the log |
15 |
| -To be able to see the printed info in the log file, set: |
16 |
| -File > Options > Logging > Verbosity = everything |
17 |
| -
|
18 |
| -Sources: |
19 |
| -https://scikit-image.org/docs/dev/api/skimage.metrics.html?highlight=structural#skimage.metrics.structural_similarity |
20 |
| -https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html#sphx-glr-auto-examples-color-exposure-plot-histogram-matching-py |
21 |
| -
|
22 |
| -
|
23 |
| -Requirements |
24 |
| ------------- |
25 |
| -numpy (comes with Aivia installer) |
26 |
| -scikit-image (comes with Aivia installer) |
27 |
| -
|
28 |
| -Parameters |
29 |
| ----------- |
30 |
| -First input: image to compare (e.g.Deep Learning restored image) |
31 |
| -Second input: reference (e.g. Ground Truth image), the one adjusted by histogram matching. |
32 |
| -IMPORTANT: Input channels need to have the same bit depth |
33 |
| -
|
34 |
| -Returns |
35 |
| -------- |
36 |
| -First output: calculated SSIM map |
37 |
| -Second output: reference image transformed with histogram matching |
38 |
| -
|
39 |
| -""" |
40 |
| - |
41 |
| -# [INPUT Name:inputGTImagePath Type:string DisplayName:'Input Ground Truth Image'] |
42 |
| -# [INPUT Name:inputRTImagePath Type:string DisplayName:'Input Restored Image'] |
43 |
| -# [OUTPUT Name:resultPathAdj Type:string DisplayName:'GT Hist match image'] |
44 |
| -# [OUTPUT Name:resultPath Type:string DisplayName:'SSIM image'] |
45 |
| -def run(params): |
46 |
| - RTimageLocation = params['inputRTImagePath'] |
47 |
| - GTimageLocation = params['inputGTImagePath'] |
48 |
| - resultLocation = params['resultPath'] |
49 |
| - resultLocationAdj = params['resultPathAdj'] |
50 |
| - |
51 |
| - # Checking existence of temporary files (individual channels) |
52 |
| - if not os.path.exists(RTimageLocation): |
53 |
| - print(f'Error: {RTimageLocation} does not exist') |
54 |
| - return; |
55 |
| - if not os.path.exists(GTimageLocation): |
56 |
| - print(f'Error: {GTimageLocation} does not exist') |
57 |
| - return; |
58 |
| - |
59 |
| - # Loading input images |
60 |
| - RTData = imread(RTimageLocation) |
61 |
| - GTData = imread(GTimageLocation) |
62 |
| - print(f'Dimensions of Restored image: {RTData.shape}') |
63 |
| - print(f'Dimensions of GT image: {GTData.shape}') |
64 |
| - |
65 |
| - # Checking dtype is the same for both input channels |
66 |
| - if GTData.dtype != RTData.dtype: |
67 |
| - error_mes = "The bit depth of your input channels is not the same. Convert one of them and retry." |
68 |
| - ctypes.windll.user32.MessageBoxW(0, error_mes, 'Error', 0) |
69 |
| - sys.exit(error_mes) |
70 |
| - |
71 |
| - # Histogram matching |
72 |
| - matched_GTData = match_histograms(GTData, RTData).astype(RTData.dtype) |
73 |
| - |
74 |
| - # MSE measurement |
75 |
| - # valMSE = skimage.measure.compare_mse(RTData, GTData) # deprecated in scikit-image 0.18 |
76 |
| - valMSE = mean_squared_error(RTData, matched_GTData) |
77 |
| - print(f'___ MSE = {valMSE} ___') # Value appears in the log if Verbosity option is set to 'Everything' |
78 |
| - |
79 |
| - # SSIM measurement |
80 |
| - outFullSSIM = structural_similarity(RTData, matched_GTData, full=True) |
81 |
| - |
82 |
| - # Extracting mean value (first item) |
83 |
| - outMeanSSIM = outFullSSIM[0] |
84 |
| - print(f'___ Mean SSIM = {outMeanSSIM} ___') |
85 |
| - |
86 |
| - # Extracting map (second item) |
87 |
| - outSSIM = outFullSSIM[1] |
88 |
| - print(f'Bit depth of SSIM array: {outSSIM.dtype}') |
89 |
| - |
90 |
| - # Convert output array whose range is [0-1] to adjusted bit range (8- or 16-bit) if necessary |
91 |
| - if RTData.dtype != np.dtype('float64') and RTData.dtype != np.dtype('float32'): |
92 |
| - outputData = rescale_intensity(outSSIM, in_range=(0, 1), out_range=(0, np.iinfo(RTData.dtype).max)) |
93 |
| - outputData = outputData.astype(RTData.dtype) |
94 |
| - else: |
95 |
| - outputData = outSSIM |
96 |
| - |
97 |
| - imsave(resultLocation, outputData) |
98 |
| - imsave(resultLocationAdj, matched_GTData) |
| 1 | +import os.path |
| 2 | +import numpy as np |
| 3 | +from skimage.io import imread, imsave |
| 4 | +from skimage.metrics import mean_squared_error, structural_similarity |
| 5 | +from skimage.exposure import match_histograms, rescale_intensity |
| 6 | +import ctypes |
| 7 | + |
| 8 | +""" |
| 9 | +Calculates SSIM map as a result of the comparison of 2 channels and metrics values (in the log file). |
| 10 | +
|
| 11 | +For the output image, it is highly recommended to use LUT color mapping to better see the variations in the SSIM values |
| 12 | +All real SSIM values (ranging from 0 to 1) can be retrieved from the map doing the following: divide intensities by 255 if image is 8-bit, or by 65535 if 16-bit. |
| 13 | +
|
| 14 | +Side note: MSE and mean SSIM (and NRMSE, PSNR) values are output in the log |
| 15 | +To be able to see the printed info in the log file, set: |
| 16 | +File > Options > Logging > Verbosity = everything |
| 17 | +
|
| 18 | +Sources: |
| 19 | +https://scikit-image.org/docs/dev/api/skimage.metrics.html?highlight=structural#skimage.metrics.structural_similarity |
| 20 | +https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_histogram_matching.html#sphx-glr-auto-examples-color-exposure-plot-histogram-matching-py |
| 21 | +
|
| 22 | +
|
| 23 | +Requirements |
| 24 | +------------ |
| 25 | +numpy (comes with Aivia installer) |
| 26 | +scikit-image (comes with Aivia installer) |
| 27 | +
|
| 28 | +Parameters |
| 29 | +---------- |
| 30 | +First input: image to compare (e.g.Deep Learning restored image) |
| 31 | +Second input: reference (e.g. Ground Truth image), the one adjusted by histogram matching. |
| 32 | +IMPORTANT: Input channels need to have the same bit depth |
| 33 | +
|
| 34 | +Returns |
| 35 | +------- |
| 36 | +First output: calculated SSIM map |
| 37 | +Second output: reference image transformed with histogram matching |
| 38 | +
|
| 39 | +""" |
| 40 | + |
| 41 | +# [INPUT Name:inputGTImagePath Type:string DisplayName:'Input Ground Truth Image'] |
| 42 | +# [INPUT Name:inputRTImagePath Type:string DisplayName:'Input Restored Image'] |
| 43 | +# [OUTPUT Name:resultPathAdj Type:string DisplayName:'GT Hist match image'] |
| 44 | +# [OUTPUT Name:resultPath Type:string DisplayName:'SSIM image'] |
| 45 | +def run(params): |
| 46 | + RTimageLocation = params['inputRTImagePath'] |
| 47 | + GTimageLocation = params['inputGTImagePath'] |
| 48 | + resultLocation = params['resultPath'] |
| 49 | + resultLocationAdj = params['resultPathAdj'] |
| 50 | + |
| 51 | + # Checking existence of temporary files (individual channels) |
| 52 | + if not os.path.exists(RTimageLocation): |
| 53 | + print(f'Error: {RTimageLocation} does not exist') |
| 54 | + return; |
| 55 | + if not os.path.exists(GTimageLocation): |
| 56 | + print(f'Error: {GTimageLocation} does not exist') |
| 57 | + return; |
| 58 | + |
| 59 | + # Loading input images |
| 60 | + RTData = imread(RTimageLocation) |
| 61 | + GTData = imread(GTimageLocation) |
| 62 | + print(f'Dimensions of Restored image: {RTData.shape}') |
| 63 | + print(f'Dimensions of GT image: {GTData.shape}') |
| 64 | + |
| 65 | + # Checking dtype is the same for both input channels |
| 66 | + if GTData.dtype != RTData.dtype: |
| 67 | + error_mes = "The bit depth of your input channels is not the same. Convert one of them and retry." |
| 68 | + ctypes.windll.user32.MessageBoxW(0, error_mes, 'Error', 0) |
| 69 | + sys.exit(error_mes) |
| 70 | + |
| 71 | + # Histogram matching |
| 72 | + matched_GTData = match_histograms(GTData, RTData).astype(RTData.dtype) |
| 73 | + |
| 74 | + # MSE measurement |
| 75 | + # valMSE = skimage.measure.compare_mse(RTData, GTData) # deprecated in scikit-image 0.18 |
| 76 | + valMSE = mean_squared_error(RTData, matched_GTData) |
| 77 | + print(f'___ MSE = {valMSE} ___') # Value appears in the log if Verbosity option is set to 'Everything' |
| 78 | + |
| 79 | + # SSIM measurement |
| 80 | + outFullSSIM = structural_similarity(RTData, matched_GTData, full=True) |
| 81 | + |
| 82 | + # Extracting mean value (first item) |
| 83 | + outMeanSSIM = outFullSSIM[0] |
| 84 | + print(f'___ Mean SSIM = {outMeanSSIM} ___') |
| 85 | + |
| 86 | + # Extracting map (second item) |
| 87 | + outSSIM = outFullSSIM[1] |
| 88 | + print(f'Bit depth of SSIM array: {outSSIM.dtype}') |
| 89 | + |
| 90 | + # Convert output array whose range is [0-1] to adjusted bit range (8- or 16-bit) if necessary |
| 91 | + if RTData.dtype != np.dtype('float64') and RTData.dtype != np.dtype('float32'): |
| 92 | + outputData = rescale_intensity(outSSIM, in_range=(0, 1), out_range=(0, np.iinfo(RTData.dtype).max)) |
| 93 | + outputData = outputData.astype(RTData.dtype) |
| 94 | + else: |
| 95 | + outputData = outSSIM |
| 96 | + |
| 97 | + imsave(resultLocation, outputData) |
| 98 | + imsave(resultLocationAdj, matched_GTData) |
0 commit comments