-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracker_module.py
100 lines (88 loc) · 3.31 KB
/
tracker_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# I need to thank Adrian for his great tutorial on openCV trajectory estimation
# This is his website which contains tons and tons of Image Processing tutoria-
# ls with openCV and python
# www.pyimagesearch.com
# import the necessary packages
from ai_model import AImodel
from collections import deque
import numpy as np
import base64
# from app.config import *
import imutils
import cv2
class TrajectoryEstimationModel(AImodel):
def __init__(self,buffer):
self.frames = []
self.pts =deque(maxlen=buffer)
def process(self,input):
try:
if not input:
self.pts.clear()
return b'',[]
self.frames.append(input)
# construct the argument parse and parse the arguments
args = {'frame':input}
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
im_bytes = base64.b64decode(input)
im_arr = np.frombuffer(im_bytes, dtype=np.uint8) # im_arr is one-dim Numpy array
frame = cv2.imdecode(im_arr, flags=cv2.IMREAD_COLOR)
# grab the current frame
# frame = img
# handle the frame from VideoCapture or VideoStream
# frame = frame[1] if args.get("video", False) else frame
# if we reached the end of the video
# blur it, and convert it to the HSV
# color space
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# update the points queue
self.pts.appendleft(center)
# loop over the set of tracked points
for i in range(1, len(self.pts)):
# if either of the tracked points are None, ignore
# them
if self.pts[i - 1] is None or self.pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(self.pts.maxlen / float(i + 1)) * 2.5)
cv2.line(frame, self.pts[i - 1], self.pts[i], (0, 0, 255), thickness)
# show the frame to our screen
_, im_arr = cv2.imencode('.jpg', frame)
im_bytes = im_arr.tobytes()
im_b64 = base64.b64encode(im_bytes)
return im_b64,list(self.pts)
except Exception as e:
raise e