-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask 1.py
111 lines (92 loc) · 2.76 KB
/
Task 1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#Libraries
import random
import numpy as np
import matplotlib.pyplot as plt
#________________________________________
# deterministic input
Selling_Price = 249
Administrative_Cost = 400000
Advertising_Cost = 600000
totalFixedCost = Advertising_Cost + Administrative_Cost
#Inputs_________________________________________________
count = 10**6
mu ,Sigma = 15000,4500
#_____________________________________________
#lists to draw histogram
#list of numbers generated randomly (C1)
directCost = list()
#list of numbers generated randomly (C2)
partsCost = list()
#list of numbers generated randomly (x)
Demand = list()
#list of profit values
ProfitList = list()
#____________________________________________________________
#calculating C1,C2,X values with functions in terms of probability of each range
def random_0to1():
return random.uniform(0, 1)
def get_c1():
rand_prob=random_0to1()
if rand_prob>=0 and rand_prob<0.1:
c1=43
elif rand_prob>=0.1 and rand_prob<0.3:
c1=44
elif rand_prob>=0.3 and rand_prob<0.7:
c1=45
elif rand_prob>=0.7 and rand_prob<0.9:
c1=46
else :
c1=47
return c1
def get_c2():
c2 = random.uniform(80,100)
return c2
def get_x():
x = np.random.normal(15000,4500)
return x
#_____________________________________________________
#Array to get Lists with range of num of probabilities
loss = 0
Max = 0
Min = 0
for i in range(count) :
#counting number of trials to get average
c1 = get_c1()
directCost.append(c1)
c2 = get_c2()
partsCost.append(c2)
x = get_x()
Demand.append(x)
profit = (( 249 - c1 - c2 )*x) - 1000000
if profit < 0 :
#ProfitList.append(profit)
loss = loss + 1
else :
ProfitList.append(profit)
Max = max(profit,Max)
Min = min(profit,Min)
# ________________________________________
#Outputs
print("Maximum Profit = ", Max, "\n")
print("Minimum Profit = ", Min, "\n")
print("Average Profit = ", sum(ProfitList)/len(ProfitList),"\n")
print("Probability of Loss = ", loss/count, "\n")
print("Probability of profit = ",1-(loss/count),"\n")
#_________________________________________________
#Plots the graphs
plt.hist(directCost, density = True , bins = 30)
plt.ylabel('probability of c1')
plt.xlabel('Values of c1')
plt.show()
plt.hist(partsCost, density = True, bins = 30)
plt.ylabel('probability of c2')
plt.xlabel('Values of c2')
plt.show()
plt.hist(Demand, density = True, bins = 30)
plt.ylabel('probability of x')
plt.xlabel('Values of x')
plt.show()
plt.hist(ProfitList , density = True , bins = 30)
plt.ylabel('probability of profit')
plt.xlabel('Values of the Profit')
plt.show()