-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample_narma.py
102 lines (70 loc) · 1.56 KB
/
example_narma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import pandas as pd
import numpy as np
import synthetica as sth
estimator = sth.NARMA
if __name__ == "__main__":
# Model
model = estimator(length=252, num_paths=1, seed=124)
print(model)
# Output
df = model.transform()
print(df)
df.plot()
# --matplotlib plt--
# Underlying white noise
noise = model.white_noise
print(noise)
# ...
pd.DataFrame(noise).plot()
# --matplotlib plt--
# Testing callback
# Mean
# ----
mean_value = model.mean
# 0
model.mean = 1
noise = model.white_noise
print(noise)
# ...
pd.DataFrame(noise).plot()
# --matplotlib plt--
# Delta
# -----
model.delta
# 0.003968253968253968
model.delta = 1/12
noise = model.white_noise
print(noise)
# ...
pd.DataFrame(noise).plot()
# --matplotlib plt--
# Sigma
# -----
model.sigma
# 0.125
model.sigma = 0.4
noise = model.white_noise
print(noise)
# ...
pd.DataFrame(noise).plot()
# --matplotlib plt--
# Cholesky
model = estimator(num_paths=2, seed=123)
# Create matrix for illustration purposes
matrix = np.array([[1, .8], [.8, 1]])
print(matrix)
# ...
# Without correlation
df1 = model.transform()
print(df1)
# ...
df1.plot()
# --matplotlib plt--
print(df1.corr())
# With correlation
df2 = model.transform(matrix)
print(df2)
# ...
df2.plot()
# --matplotlib plt--
print(df2.corr())