-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsystem_residue_features.py
257 lines (218 loc) · 10.2 KB
/
system_residue_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn import model_selection
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score, f1_score, classification_report, precision_score, recall_score, confusion_matrix
from sklearn import tree
from sklearn import svm
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import RandomOverSampler,SMOTE, ADASYN
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier
import matplotlib
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import r2_score
import statsmodels.api as sm
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
#This script determines the energetic barrier of a ligand transition depending on kinetic and thermodynamic features of each residue.
#Residue scale predicition of ligand dynamic behaviour.
#Identify which residues are most responsive to the ligand.
#Intended to be used in CHARMM pipeline but can be more generally applied to other molecular dynamic pipelines.
#Load the data.
df=pd.read_csv('0100leu89ft.csv',delimiter=",")
#Checking the data.
df['location'].nunique()
df.isnull().sum()
#Preprcoessing
enc=preprocessing.LabelEncoder()
df['location'] = enc.fit_transform(df['location'])
y = df[['location']]
x = df[df.columns[1:]]
#Split data into train and test.
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=77)
#Train linear regression model.
lm = LinearRegression()
lm.fit(X_train, y_train)
lm.score(X_train, y_train)
print("The linear model is: Y = {:.5} + {:.5}*cav1 + {:.5}*cav2 + {:.5}*cav3+ {:.5}*cav4".format(lm.intercept_[0], lm.coef_[0][0], lm.coef_[0][1], lm.coef_[0][2], lm.coef_[0][3]))
X = np.column_stack((df['SCRMSD'], df['CARMSD'], df['CHI1'],df['CHI2'],df['SELFDIHED'],df['SELFVDW'],df['SELFELEC'],df['SelfALL'],df['MBDIHED'],df['MBVDW'],df['MBELEC'],df['MBALL'],df['SCHBOND#']))
y = df['location']
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
#Train Lasso model & Score.
reg = LassoCV()
reg.fit(x, y)
print("Best alpha using built-in LassoCV: %f" % reg.alpha_)
print("Best score using built-in LassoCV: %f" %reg.score(x,y))
coef = pd.Series(reg.coef_, index = x.columns)
print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " + str(sum(coef == 0)) + " variables")
imp_coef = coef.sort_values()
import matplotlib
matplotlib.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Feature importance using Lasso Model")
#Train and fit Logistic Regression model.
LoRmod=LogisticRegression(max_iter=10000)
LoRmod.fit(X_train,y_train)
#Score LR training
LoRmod.score(X_train, y_train)
#Predict test and score of Logistic regression model.
LoRpred= LoRmod.predict(X_test)
print('Accuracy score:', accuracy_score(y_test,LoRpred)*100)
print('F1 score:', f1_score(y_test, LoRpred,pos_label='positive',average='macro')*100)
print('Recall score:', recall_score(y_test, LoRpred,pos_label='positive',average='macro')*100)
print('Precision score:', precision_score(y_test, LoRpred,pos_label='positive',average='macro')*100)
print('Confusion matrix:', confusion_matrix(y_test, LoRpred))
print('Classification report:', classification_report(y_test, LoRpred))
#Determine best k-value.
k_list=[]
for i in range(1,100):
classifier=KNeighborsClassifier(n_neighbors=i)
classifier.fit(X_train,y_train)
k_list.append(classifier.score(X_test,y_test))
plt.plot(range(1,100),k_list)
plt.ylabel('Validation acc')
plt.title('nice')
plt.show()
#Train and fit KNN model (k=60).
KNNmod=KNeighborsClassifier(n_neighbors=60)
KNNmod.fit(X_train,y_train)
#Score KNN fit.
KNNmod.score(X_train, y_train)
#Predict test and score of K-nearest neighbour model.
KNNpred = KNNmod.predict(X_test)
print('Accuracy score:', accuracy_score(y_test,KNNpred)*100)
print('F1 score:', f1_score(y_test, KNNpred,pos_label='positive',average='macro')*100)
print('Recall score:', recall_score(y_test, KNNpred,pos_label='positive',average='macro')*100)
print('Precision score:', precision_score(y_test, KNNpred,pos_label='positive',average='macro')*100)
print('Confusion matrix:', confusion_matrix(y_test, KNNpred))
print('Classification report:', classification_report(y_test, KNNpred))
#Train and fit Support Vector Machine model (gamma=0.1).
SVCmod=SVC(kernel='rbf',gamma=0.1)
SVCmod.fit(X_train,y_train)
#Score DT fit.
SVCmod.score(X_train, y_train)
gammalist=[]
for i in range(1,11):
SVCmod=SVC(kernel='rbf',gamma=float(i/10))
SVCmod.fit(X_train,y_train)
gammalist.append(SVCmod.score(X_train, y_train))
plt.plot(range(1,11),gammalist)
plt.ylabel('Validation acc')
plt.title('nice')
plt.show()
SVCmod=SVC(kernel='rbf',gamma=0.2)
SVCmod.fit(X_train,y_train)
SVCmod.score(X_train, y_train)
#Predict test and score of SVC model.
SVCpred = SVCmod.predict(X_test)
print('Accuracy score:', accuracy_score(y_test,SVCpred)*100)
print('F1 score:', f1_score(y_test, SVCpred,pos_label='positive',average='macro')*100)
print('Recall score:', recall_score(y_test, SVCpred,pos_label='positive',average='macro')*100)
print('Precision score:', precision_score(y_test, SVCpred,pos_label='positive',average='macro')*100)
print('Confusion matrix:', confusion_matrix(y_test, SVCpred))
print('Classification report:', classification_report(y_test, SVCpred))
#Train and fit Random Forest model.
RFmod=RandomForestClassifier(n_estimators=100,random_state=77)
RFmod.fit(X_train,y_train)
#Score RF fit.
RFmod.score(X_train, y_train)
#Predict test and score of Random Forest model.
RFpred = RFmod.predict(X_test)
print('Accuracy score:', accuracy_score(y_test,RFpred)*100)
print('F1 score:', f1_score(y_test, RFpred,pos_label='positive',average='macro')*100)
print('Recall score:', recall_score(y_test, RFpred,pos_label='positive',average='macro')*100)
print('Precision score:', precision_score(y_test, RFpred,pos_label='positive',average='macro')*100)
print('Confusion matrix:', confusion_matrix(y_test, RFpred))
print('Classification report:', classification_report(y_test, RFpred))
#Predict test and score of Linear Regression model.
lm = LinearRegression()
lm.fit(X_train, y_train)
lm.score(X_train, y_train)
lm.score(X_test, y_test)
X = np.column_stack((df['SCRMSD'], df['CARMSD'], df['CHI1'],df['CHI2'],df['SELFDIHED'],df['SELFVDW'],df['SELFELEC'],df['SelfALL'],df['MBDIHED'],df['MBVDW'],df['MBELEC'],df['MBALL'],df['SCHBOND#']))
y = df['location']
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
def f_importances(coef, names, top=-1):
imp = coef
imp, names = zip(*sorted(list(zip(imp, names))))
# Show all features
if top == -1:
top = len(names)
plt.barh(range(top), imp[::-1][0:top], align='center')
plt.yticks(range(top), names[::-1][0:top])
plt.show()
# whatever your features are called
features_names = ['cav1', 'cav2','cav3','cav4']
svm = svm.SVC(kernel='linear')
svm.fit(X_train, y_train)
# Specify your top n features you want to visualize.
# You can also discard the abs() function
# if you are interested in negative contribution of features
f_importances(abs(svm.coef_[0]), features_names, top=10)
DTmod=DecisionTreeClassifier(criterion='gini', random_state = 77,max_depth=10)
DTmod.fit(X_train,y_train)
#Score DT fit.
DTmod.score(X_train, y_train)
#Predict test and score of Decision Tree model.
DTpred = DTmod.predict(X_test)
print('Accuracy score:', accuracy_score(y_test,DTpred)*100)
print('F1 score:', f1_score(y_test, DTpred,pos_label='positive',average='macro')*100)
print('Recall score:', recall_score(y_test, DTpred,pos_label='positive',average='macro')*100)
print('Precision score:', precision_score(y_test, DTpred,pos_label='positive',average='macro')*100)
print('Confusion matrix:', confusion_matrix(y_test, DTpred))
print('Classification report:', classification_report(y_test, DTpred))
featurelist=list(df.columns[1:])
plt.bar(range(len(DTmod.feature_importances_)), DTmod.feature_importances_)
plt.xlabel("feature")
plt.ylabel("importance")
plt.title("feature importance")
plt.xticks(range(len(DTmod.feature_importances_)), featurelist,rotation='vertical')
plt.show()
#Train and fit Random Forest model.
RFmod=RandomForestClassifier(n_estimators=100,random_state=77)
RFmod.fit(X_train,y_train)
#Score RF fit.
RFmod.score(X_train, y_train)
#Predict test and score of Random Forest model.
RFpred = RFmod.predict(X_test)
print('Accuracy score:', accuracy_score(y_test,RFpred)*100)
print('F1 score:', f1_score(y_test, RFpred,pos_label='positive',average='macro')*100)
print('Recall score:', recall_score(y_test, RFpred,pos_label='positive',average='macro')*100)
print('Precision score:', precision_score(y_test, RFpred,pos_label='positive',average='macro')*100)
print('Confusion matrix:', confusion_matrix(y_test, RFpred))
print('Classification report:', classification_report(y_test, RFpred))
featurelist=list(df.columns[1:])
plt.bar(range(len(RFmod.feature_importances_)), RFmod.feature_importances_)
plt.xlabel("feature")
plt.ylabel("importance")
plt.title("feature importance")
plt.xticks(range(len(RFmod.feature_importances_)), featurelist,rotation='vertical')
plt.show()
print(featurelist)
#K-fold comparison between models
kfold = model_selection.KFold(n_splits=10, random_state=77)
cv_LoR = model_selection.cross_val_score(LogisticRegression(max_iter=10000), X_train, y_train, cv=kfold, scoring='accuracy')
cv_DT = model_selection.cross_val_score(DecisionTreeClassifier(criterion='gini', random_state = 77,max_depth=10), X_train, y_train, cv=kfold, scoring='accuracy')
cv_RF = model_selection.cross_val_score(RandomForestClassifier(n_estimators=100), X_train, y_train, cv=kfold, scoring='accuracy')
cv_SVC = model_selection.cross_val_score(SVC(kernel='rbf',gamma=0.2), X_train, y_train, cv=kfold, scoring='accuracy')
cv_KNN = model_selection.cross_val_score(KNeighborsClassifier(n_neighbors=60), X_train, y_train, cv=kfold, scoring='accuracy')
results=[cv_LoR,cv_DT, cv_RF,cv_SVC,cv_KNN]
names=["LoR","DT","RF","SVC,""KNN"]
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()