-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_img.py
67 lines (50 loc) · 2.15 KB
/
CNN_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 3 20:17:55 2017
@author: JATIN
"""
# Import Statements
from keras.layers import Dense
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPool2D
from keras.layers import Flatten
#Initialising CNN
classifier = Sequential()
#Adding Convolution Layer 1
classifier.add(Convolution2D(32,3,3,input_shape=(64,64,3),activation='relu'))
#Pooling
classifier.add(MaxPool2D(pool_size=(2,2)))
#Adding Convolution Layer 2
classifier.add(Convolution2D(32,3,3,activation='relu'))
classifier.add(MaxPool2D(pool_size=(2,2)))
#Flatten
classifier.add(Flatten())
#Full Connection
classifier.add(Dense(output_dim=128,activation='relu'))
#classifier.add(Dense(output_dim=64,activation='relu'))
classifier.add(Dense(output_dim=1,activation='sigmoid'))
#compile
classifier.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
#Fitting the model to images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen= ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size=(64,64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size=(64,64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(training_set,
steps_per_epoch=8000,
epochs=25,
validation_data=test_set,
validation_steps=2000,
workers=4
)