-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlinear_clf.py
329 lines (275 loc) · 11.9 KB
/
linear_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import argparse
import os
from loguru import logger
import torch
from torch import nn
from torch.cuda import amp
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from config import Config
from factories import (
DownstreamDatasetFactory,
PretrainingModelFactory,
OptimizerFactory,
LRSchedulerFactory,
)
from utils.checkpointing import CheckpointManager
from utils.common import common_parser, common_setup, cycle
import utils.distributed as dist
from utils.metrics import TopkAccuracy
from utils.base import Timer
from clip import build_model
import warnings
warnings.filterwarnings("ignore")
# fmt: off
parser = common_parser(
description="""Do image classification with linear models and frozen
feature extractor, or fine-tune the feature extractor end-to-end."""
)
group = parser.add_argument_group("Downstream config arguments.")
group.add_argument(
"--down-config", metavar="FILE", help="Path to a downstream config file."
)
group.add_argument(
"--down-config-override", nargs="*", default=[],
help="A list of key-value pairs to modify downstream config params.",
)
parser.add_argument_group("Checkpointing and Logging")
parser.add_argument(
"--weight-init", choices=["random", "imagenet", "torchvision", "vlinfo", "clip"],
default="vlinfo", help="""How to initialize weights:
1. 'random' initializes all weights randomly
2. 'imagenet' initializes backbone weights from torchvision model zoo
3. {'torchvision', 'vlinfo'} load state dict from --checkpoint-path
- with 'torchvision', state dict would be from PyTorch's training
script.
- with 'vlinfo' it should be for our full pretrained model."""
)
parser.add_argument(
"--log-every", type=int, default=500,
help="""Log training curves to tensorboard after every these many iterations
only master process logs averaged loss values across processes.""",
)
parser.add_argument(
"--checkpoint-path",
help="""Path to load checkpoint and run downstream task evaluation. The
name of checkpoint file is required to be `model_*.pth`, where * is
iteration number from which the checkpoint was serialized."""
)
parser.add_argument(
"--checkpoint-every", type=int, default=10000,
help="""Serialize model to a checkpoint after every these many iterations.
For ImageNet, (5005 iterations = 1 epoch); for iNaturalist (1710 iterations
= 1 epoch).""",
)
parser.add_argument(
"--resume-from", type=str, default=None,
help="""Resume training.""",
)
# fmt: on
def main(_A: argparse.Namespace):
if _A.num_gpus_per_machine == 0:
# Set device as CPU if num_gpus_per_machine = 0.
device = torch.device("cpu")
else:
# Get the current device as set for current distributed process.
# Check `launch` function in `vlinfo.utils.distributed` module.
device = torch.cuda.current_device()
# Create a downstream config object (this will be immutable) and perform
# common setup such as logging and setting up serialization directory.
_DOWNC = Config(_A.down_config, _A.down_config_override)
common_setup(_DOWNC, _A, job_type="downstream")
# Create a (pretraining) config object and backup in serializaion directory.
_C = Config(_A.config, _A.config_override)
# _C.dump(os.path.join(_A.serialization_dir, "pretrain_config.yaml"))
# Get dataset name for tensorboard logging.
DATASET = _DOWNC.DATA.ROOT.split("/")[-1]
if DATASET == "imagenet2012":
DATASET = "imagenet"
# Set number of output classes according to dataset:
NUM_CLASSES_MAPPING = {"imagenet": 1000, "inaturalist": 8142}
NUM_CLASSES = NUM_CLASSES_MAPPING[DATASET]
# -------------------------------------------------------------------------
# INSTANTIATE DATALOADER, MODEL, OPTIMIZER, SCHEDULER
# -------------------------------------------------------------------------
train_dataset = DownstreamDatasetFactory.from_config(_DOWNC, split="train")
train_dataloader = DataLoader(
train_dataset,
batch_size=_DOWNC.OPTIM.BATCH_SIZE // dist.get_world_size(),
num_workers=_A.cpu_workers,
sampler=DistributedSampler(
train_dataset,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=True,
),
drop_last=False,
pin_memory=True,
collate_fn=train_dataset.collate_fn,
)
val_dataset = DownstreamDatasetFactory.from_config(_DOWNC, split="val")
val_dataloader = DataLoader(
val_dataset,
batch_size=_DOWNC.OPTIM.BATCH_SIZE // dist.get_world_size(),
num_workers=_A.cpu_workers,
sampler=DistributedSampler(
val_dataset,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=False,
),
pin_memory=True,
drop_last=False,
collate_fn=val_dataset.collate_fn,
)
if _A.weight_init == "vlinfo":
# Initialize model using pretraining config.
pretrained_model = PretrainingModelFactory.from_config(_C)
# Load weights according to the init method, do nothing for `random`, and
# `imagenet` is already taken care of.
CheckpointManager(model=pretrained_model).load(_A.checkpoint_path)
# Pull out the CNN (torchvision-like) from our pretrained model and add
# back the FC layer - this is exists in torchvision models, and is set to
# `nn.Identity()` during pretraining.
model = pretrained_model.image_encoder.img_encoder # type: ignore
model.fc = nn.Linear(_DOWNC.MODEL.VISUAL.FEATURE_SIZE,
NUM_CLASSES)
model.to(device)
if _A.weight_init == "clip":
state_dict = torch.load(_A.checkpoint_path, map_location="cpu")
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
model = build_model(sd)
dtype = model.dtype
model = model.visual
model.fc = nn.Linear(_DOWNC.MODEL.VISUAL.FEATURE_SIZE,
NUM_CLASSES)
model.to(device)
# Re-initialize the FC layer.
torch.nn.init.normal_(model.fc.weight.data, mean=0.0, std=0.01)
torch.nn.init.constant_(model.fc.bias.data, 0.0)
if _A.weight_init == "clip":
model.fc.weight.data = model.fc.weight.data.half()
model.fc.bias.data = model.fc.bias.data.half()
# Freeze all layers except FC as per config param.
if _DOWNC.MODEL.VISUAL.FROZEN:
# Set model to eval mode to prevent BatchNorm from updating running
# mean and std. With only a linear layer, being in eval mode when
# training will not matter anyway.
model.eval()
for name, param in model.named_parameters():
if "fc" not in name:
param.requires_grad = False
# Cross entropy loss and accuracy meter.
criterion = nn.CrossEntropyLoss()
top1 = TopkAccuracy(top_k=1)
optimizer = OptimizerFactory.from_config(_DOWNC, model.named_parameters())
scheduler = LRSchedulerFactory.from_config(_DOWNC, optimizer)
if _A.weight_init == "vlinfo":
del pretrained_model
# -------------------------------------------------------------------------
# BEFORE TRAINING STARTS
# -------------------------------------------------------------------------
# Create a gradient scaler for automatic mixed precision.
scaler = amp.GradScaler(enabled=_DOWNC.AMP)
if dist.get_world_size() > 1:
dist.synchronize()
model = nn.parallel.DistributedDataParallel(
model, device_ids=[device], find_unused_parameters=False
)
if _A.resume_from is not None:
_ = CheckpointManager(
model=model,
optimizer=optimizer,
scheduler=scheduler,
).load(_A.resume_from)
start_iteration = 70000
else:
start_iteration = 0
if dist.is_master_process():
serialization_dir = os.path.join(
"/".join(_A.checkpoint_path.split("/")[:-1]), DATASET
)
if not os.path.exists(serialization_dir):
os.makedirs(serialization_dir)
checkpoint_manager = CheckpointManager(
serialization_dir,
model=model,
optimizer=optimizer,
scheduler=scheduler,
)
tensorboard_writer = SummaryWriter(log_dir=serialization_dir)
# Keep track of time per iteration and ETA.
timer = Timer(start_from=start_iteration,
total_iterations=_DOWNC.OPTIM.NUM_ITERATIONS)
# Create an iterator from dataloader to sample batches perpetually.
train_dataloader_iter = cycle(train_dataloader, device, start_iteration)
# -------------------------------------------------------------------------
# TRAINING LOOP
# -------------------------------------------------------------------------
for iteration in range(start_iteration + 1, _DOWNC.OPTIM.NUM_ITERATIONS + 1):
timer.tic()
optimizer.zero_grad()
batch = next(train_dataloader_iter)
with amp.autocast(enabled=_DOWNC.AMP):
if _A.weight_init == "vlinfo":
logits = model(batch["image"])
if _A.weight_init == "clip":
logits = model(batch["image"].type(dtype))
loss = criterion(logits, batch["label"])
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
timer.toc()
if iteration % _A.log_every == 0 and dist.is_master_process():
logger.info(
f"{timer.stats} | Loss: {loss:.3f} | GPU: {dist.gpu_mem_usage()} MB"
)
# ---------------------------------------------------------------------
# VALIDATION
# ---------------------------------------------------------------------
if iteration % _A.checkpoint_every == 0:
torch.set_grad_enabled(False)
model.eval()
total_val_loss = torch.tensor(0.0).to(device, non_blocking=True)
for val_iteration, batch in enumerate(val_dataloader, start=1):
for key in batch:
batch[key] = batch[key].to(device, non_blocking=True)
logits = model(batch["image"])
loss = criterion(logits, batch["label"])
top1(logits, batch["label"])
total_val_loss += loss
# Divide each loss component by number of val batches per GPU.
total_val_loss = total_val_loss / val_iteration
dist.average_across_processes(total_val_loss)
# Get accumulated Top-1 accuracy for logging across GPUs.
acc = top1.get_metric(reset=True)
dist.average_across_processes(acc)
torch.set_grad_enabled(True)
# Set model back to train mode only when fine-tuning end-to-end.
if not _DOWNC.MODEL.VISUAL.FROZEN:
model.train()
# Save recent checkpoint and best checkpoint based on accuracy.
if dist.is_master_process():
checkpoint_manager.step(iteration)
logger.info(f"Iter: {iteration} | Top-1 accuracy: {acc})")
# All processes will wait till master process is done logging.
dist.synchronize()
if __name__ == "__main__":
_A = parser.parse_args()
# Add an arg in config override if `--weight-init` is imagenet.
if _A.weight_init == "imagenet":
_A.config_override.extend(["MODEL.VISUAL.PRETRAINED", True])
if _A.num_gpus_per_machine == 0:
main(_A)
else:
# This will launch `main` and set appropriate CUDA device (GPU ID) as
# per process (accessed in the beginning of `main`).
dist.launch(
main,
num_machines=_A.num_machines,
num_gpus_per_machine=_A.num_gpus_per_machine,
machine_rank=_A.machine_rank,
dist_url=_A.dist_url,
args=(_A,),
)