-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 18 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
shiny::runApp()
rsconnect::setAccountInfo(
name = 'odrr2p-captnemomar',
token = 'CCF748BD4E11509F41BA9E73E83CF421',
secret = 'myOnb/DsTZZpsnJSdOAggcAWMA6DvkVLM3izuVXX'
)
setwd("~/GitHub/Bombing-Death-Tracker")
rsconnect::deployApp()
rsconnect::deployApp()
#package installation
install.packages("rsconnect")
install.packages("tidyverse")
install.packages("ggplot2")
install.packages("httr")
install.packages("jsonlite")
install.packages("dplyr")
library(rsconnect)
library(tidyverse)
library(ggplot2)
library(httr) # For handling API requests
library(jsonlite) # For handling the response of the API
library(dplyr) # For handling data
# Base URL
base_url <- "https://api.acleddata.com/acled/read"
# Set up the list of parameters
params <- list(
email = "[email protected]",
key = "IbF5sT9lJbY-7eqg7LFf", # Replace with your actual API key
country = "Israel|Palestine|Syria|Lebanon",
fields = "event_date|year|latitude|longitude|event_type|sub_event_type|country|fatalities|actor1|actor2",
limit = 5000, # Maximum records per page
page = 1 # Starting page
)
# Initialize an empty list to store all records
all_data <- list()
# Paginated request loop for 2023 and 2024
for (yr in c(2023, 2024)) {
cat("Fetching data for year", yr, "...\n")
params$year <- yr # Add the year filter to the parameters
params$page <- 1 # Reset the page to 1 for each year
repeat {
cat("Fetching page", params$page, "for year", yr, "...\n")
# Make the API request
response <- GET(url = base_url, query = params)
# Check response status
if (status_code(response) != 200) {
stop("API request failed with status:", status_code(response))
}
# Parse the JSON response
response_json <- jsonlite::fromJSON(content(response, "text"), simplifyVector = TRUE)
# Append data to the list
if (!is.null(response_json$data) && length(response_json$data) > 0) {
# Convert to a DataFrame and add the year column
df <- as.data.frame(response_json$data)
df$year <- yr
all_data <- append(all_data, list(df))
params$page <- params$page + 1 # Increment the page number
} else {
cat("No more data available for year", yr, ".\n")
break # Exit loop if no more data
}
}
}
install.packages("dplyr")
install.packages("jsonlite")
install.packages("httr")
install.packages("ggplot2")
install.packages("tidyverse")
# Combine all pages into a single data frame
final_data <- bind_rows(all_data)
# Save the data to a CSV file
write.csv(final_data, "acled_2023_2024_data.csv", row.names = FALSE)
cat("Data saved to 'acled_2023_2024_data.csv'.\n")
install.packages("tidyverse")
install.packages("shiny") # For creating interactive web applications
install.packages("leaflet") # For creating interactive maps
install.packages("dplyr") # For data manipulation
install.packages("lubridate") # For handling dates
install.packages("sf") # For spatial data manipulation
install.packages("fastmap")
install.packages("bslib")
library(shiny)
library(leaflet)
library(dplyr)
library(lubridate)
library(sf)
library(fastmap)
library(bslib)
install.packages("leaflet.extras")
install.packages("ggplot2")
install.packages("shinyWidgets")
library(leaflet.extras)
library(ggplot2)
library(shinyWidgets)
# Load your ACLED data
acled_data <- read.csv("acled_2023_2024_data.csv")
acled_data$event_date <- as.Date(acled_data$event_date)
ui <- fluidPage(
install.packages("shiny")
titlePanel("Dynamic Event Density Map for Israel, Palestine, Lebanon, and Syria"),
sidebarLayout(
install.packages("shinyWidgets")
install.packages("ggplot2")
install.packages("leaflet.extras")
install.packages("sf")
install.packages("fastmap")
install.packages("lubridate")
install.packages("bslib")
install.packages("dplyr")
install.packages("leaflet")
install.packages("ggplot2")
install.packages("httr")
install.packages("jsonlite")
# Load your ACLED data
acled_data <- read.csv("acled_2023_2024_data.csv")
acled_data$event_date <- as.Date(acled_data$event_date)
ui <- fluidPage(
titlePanel("Dynamic Event Density Map for Israel, Palestine, Lebanon, and Syria"),
sidebarLayout(
sidebarPanel(
switchInput(
"mode",
label = "Mode",
onLabel = "Animate",
offLabel = "Manual",
value = FALSE, # Default to manual
inline = TRUE
),
conditionalPanel(
condition = "input.mode == false", # Manual mode
sliderInput(
"date_range",
"Select Date Range:",
min = as.Date("2023-10-01"),
max = max(acled_data$event_date),
value = c(as.Date("2023-10-01"), max(acled_data$event_date)),
timeFormat = "%Y-%m-%d"
)
),
conditionalPanel(
condition = "input.mode == true", # Animation mode
sliderInput(
"animation_date",
"Animate Through Dates:",
min = as.Date("2023-10-01"),
max = max(acled_data$event_date),
value = as.Date("2023-10-01"),
timeFormat = "%Y-%m-%d",
animate = animationOptions(interval = 167, loop = TRUE) # Animation settings
)
)
),
mainPanel(
leafletOutput("event_map", height = "630px"),
htmlOutput("fatality_counters")
)
)
)
server <- function(input, output, session) {
# Reactive filtered data for manual mode
manual_data <- reactive({
acled_data %>%
filter(event_date >= input$date_range[1] & event_date <= input$date_range[2]) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon"))
})
# Reactive filtered data for animation mode
animation_data <- reactive({
acled_data %>%
filter(event_date == input$animation_date) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon"))
})
# Reactive fatalities for counters
cumulative_data <- reactive({
if (input$mode == FALSE) { # Manual mode
acled_data %>%
filter(event_date >= input$date_range[1] & event_date <= input$date_range[2]) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon")) %>%
group_by(country) %>%
summarize(cumulative_fatalities = sum(fatalities, na.rm = TRUE))
} else { # Animation mode
acled_data %>%
filter(event_date <= input$animation_date) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon")) %>%
group_by(country) %>%
summarize(cumulative_fatalities = sum(fatalities, na.rm = TRUE))
}
})
# Render leaflet map
output$event_map <- renderLeaflet({
leaflet() %>%
setView(lng = 35.2137, lat = 31.7683, zoom = 8) %>%
addProviderTiles("CartoDB.Positron")
})
# Update heatmap based on selected mode
observe({
filtered_data <- if (input$mode == FALSE) manual_data() else animation_data()
leafletProxy("event_map", data = filtered_data) %>%
clearHeatmap() %>%
addHeatmap(
lat = ~latitude,
lng = ~longitude,
intensity = ~1,
blur = 20,
max = 0.05,
radius = 15
)
})
# Update fatality counters
output$fatality_counters <- renderUI({
cumulative <- cumulative_data()
israel_fatalities <- if ("Israel" %in% cumulative$country) cumulative %>% filter(country == "Israel") %>% pull(cumulative_fatalities) else 0
palestine_fatalities <- if ("Palestine" %in% cumulative$country) cumulative %>% filter(country == "Palestine") %>% pull(cumulative_fatalities) else 0
syria_fatalities <- if ("Syria" %in% cumulative$country) cumulative %>% filter(country == "Syria") %>% pull(cumulative_fatalities) else 0
lebanon_fatalities <- if ("Lebanon" %in% cumulative$country) cumulative %>% filter(country == "Lebanon") %>% pull(cumulative_fatalities) else 0
tags$div(
style = "text-align: center; margin-top: 20px;",
tags$div(style = "font-size: 20px; font-weight: bold; color: #333;", "Fatalities by Country Caused by Israel:"),
tags$div(style = "font-size: 18px; color: #333;", paste("Israel: ", israel_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Palestine: ", palestine_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Syria: ", syria_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Lebanon: ", lebanon_fatalities))
)
})
}
shinyApp(ui = ui, server = server)
rsconnect::deployApp()
# Load your ACLED data
acled_data <- read.csv("acled_2023_2024_data.csv")
acled_data$event_date <- as.Date(acled_data$event_date)
ui <- fluidPage(
titlePanel("Dynamic Event Density Map for Israel, Palestine, Lebanon, and Syria"),
sidebarLayout(
sidebarPanel(
switchInput(
"mode",
label = "Mode",
onLabel = "Animate",
offLabel = "Manual",
value = FALSE, # Default to manual
inline = TRUE
),
conditionalPanel(
condition = "input.mode == false", # Manual mode
sliderInput(
"date_range",
"Select Date Range:",
min = as.Date("2023-10-01"),
max = max(acled_data$event_date),
value = c(as.Date("2023-10-01"), max(acled_data$event_date)),
timeFormat = "%Y-%m-%d"
)
),
conditionalPanel(
condition = "input.mode == true", # Animation mode
sliderInput(
"animation_date",
"Animate Through Dates:",
min = as.Date("2023-10-01"),
max = max(acled_data$event_date),
value = as.Date("2023-10-01"),
timeFormat = "%Y-%m-%d",
animate = animationOptions(interval = 167, loop = TRUE) # Animation settings
)
)
),
mainPanel(
leafletOutput("event_map", height = "630px"),
htmlOutput("fatality_counters")
)
)
)
server <- function(input, output, session) {
# Reactive filtered data for manual mode
manual_data <- reactive({
acled_data %>%
filter(event_date >= input$date_range[1] & event_date <= input$date_range[2]) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon"))
})
# Reactive filtered data for animation mode
animation_data <- reactive({
acled_data %>%
filter(event_date == input$animation_date) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon"))
})
# Reactive fatalities for counters
cumulative_data <- reactive({
if (input$mode == FALSE) { # Manual mode
acled_data %>%
filter(event_date >= input$date_range[1] & event_date <= input$date_range[2]) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon")) %>%
group_by(country) %>%
summarize(cumulative_fatalities = sum(fatalities, na.rm = TRUE))
} else { # Animation mode
acled_data %>%
filter(event_date <= input$animation_date) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon")) %>%
group_by(country) %>%
summarize(cumulative_fatalities = sum(fatalities, na.rm = TRUE))
}
})
# Render leaflet map
output$event_map <- renderLeaflet({
leaflet() %>%
setView(lng = 35.2137, lat = 31.7683, zoom = 8) %>%
addProviderTiles("CartoDB.Positron")
})
# Update heatmap based on selected mode
observe({
filtered_data <- if (input$mode == FALSE) manual_data() else animation_data()
leafletProxy("event_map", data = filtered_data) %>%
clearHeatmap() %>%
addHeatmap(
lat = ~latitude,
lng = ~longitude,
intensity = ~1,
blur = 20,
max = 0.05,
radius = 15
)
})
# Update fatality counters
output$fatality_counters <- renderUI({
cumulative <- cumulative_data()
israel_fatalities <- if ("Israel" %in% cumulative$country) cumulative %>% filter(country == "Israel") %>% pull(cumulative_fatalities) else 0
palestine_fatalities <- if ("Palestine" %in% cumulative$country) cumulative %>% filter(country == "Palestine") %>% pull(cumulative_fatalities) else 0
syria_fatalities <- if ("Syria" %in% cumulative$country) cumulative %>% filter(country == "Syria") %>% pull(cumulative_fatalities) else 0
lebanon_fatalities <- if ("Lebanon" %in% cumulative$country) cumulative %>% filter(country == "Lebanon") %>% pull(cumulative_fatalities) else 0
tags$div(
style = "text-align: center; margin-top: 20px;",
tags$div(style = "font-size: 20px; font-weight: bold; color: #333;", "Fatalities by Country Caused by Israel:"),
tags$div(style = "font-size: 18px; color: #333;", paste("Israel: ", israel_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Palestine: ", palestine_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Syria: ", syria_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Lebanon: ", lebanon_fatalities))
)
})
}
shinyApp(ui = ui, server = server)
rsconnect::deployApp()
# Base URL
base_url <- "https://api.acleddata.com/acled/read"
# Set up the list of parameters
params <- list(
email = "[email protected]",
key = "IbF5sT9lJbY-7eqg7LFf", # Replace with your actual API key
country = "Israel|Palestine|Syria|Lebanon",
fields = "event_date|year|latitude|longitude|event_type|sub_event_type|country|fatalities|actor1|actor2",
limit = 5000, # Maximum records per page
page = 1 # Starting page
)
# Initialize an empty list to store all records
all_data <- list()
# Paginated request loop for 2023 and 2024
for (yr in c(2023, 2024)) {
cat("Fetching data for year", yr, "...\n")
params$year <- yr # Add the year filter to the parameters
params$page <- 1 # Reset the page to 1 for each year
repeat {
cat("Fetching page", params$page, "for year", yr, "...\n")
# Make the API request
response <- GET(url = base_url, query = params)
# Check response status
if (status_code(response) != 200) {
stop("API request failed with status:", status_code(response))
}
# Parse the JSON response
response_json <- jsonlite::fromJSON(content(response, "text"), simplifyVector = TRUE)
# Append data to the list
if (!is.null(response_json$data) && length(response_json$data) > 0) {
# Convert to a DataFrame and add the year column
df <- as.data.frame(response_json$data)
df$year <- yr
all_data <- append(all_data, list(df))
params$page <- params$page + 1 # Increment the page number
} else {
cat("No more data available for year", yr, ".\n")
break # Exit loop if no more data
}
}
}
# Load your ACLED data
acled_data <- read.csv("acled_2023_2024_data.csv")
acled_data$event_date <- as.Date(acled_data$event_date)
ui <- fluidPage(
titlePanel("Dynamic Event Density Map for Israel, Palestine, Lebanon, and Syria"),
sidebarLayout(
sidebarPanel(
switchInput(
"mode",
label = "Mode",
onLabel = "Animate",
offLabel = "Manual",
value = FALSE, # Default to manual
inline = TRUE
),
conditionalPanel(
condition = "input.mode == false", # Manual mode
sliderInput(
"date_range",
"Select Date Range:",
min = as.Date("2023-10-01"),
max = max(acled_data$event_date),
value = c(as.Date("2023-10-01"), max(acled_data$event_date)),
timeFormat = "%Y-%m-%d"
)
),
conditionalPanel(
condition = "input.mode == true", # Animation mode
sliderInput(
"animation_date",
"Animate Through Dates:",
min = as.Date("2023-10-01"),
max = max(acled_data$event_date),
value = as.Date("2023-10-01"),
timeFormat = "%Y-%m-%d",
animate = animationOptions(interval = 167, loop = TRUE) # Animation settings
)
)
),
mainPanel(
leafletOutput("event_map", height = "630px"),
htmlOutput("fatality_counters")
)
)
)
server <- function(input, output, session) {
# Reactive filtered data for manual mode
manual_data <- reactive({
acled_data %>%
filter(event_date >= input$date_range[1] & event_date <= input$date_range[2]) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon"))
})
# Reactive filtered data for animation mode
animation_data <- reactive({
acled_data %>%
filter(event_date == input$animation_date) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon"))
})
# Reactive fatalities for counters
cumulative_data <- reactive({
if (input$mode == FALSE) { # Manual mode
acled_data %>%
filter(event_date >= input$date_range[1] & event_date <= input$date_range[2]) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon")) %>%
group_by(country) %>%
summarize(cumulative_fatalities = sum(fatalities, na.rm = TRUE))
} else { # Animation mode
acled_data %>%
filter(event_date <= input$animation_date) %>%
filter(event_type == "Explosions/Remote violence" & actor1 == "Military Forces of Israel (2022-)") %>%
filter(country %in% c("Israel", "Palestine", "Syria", "Lebanon")) %>%
group_by(country) %>%
summarize(cumulative_fatalities = sum(fatalities, na.rm = TRUE))
}
})
# Render leaflet map
output$event_map <- renderLeaflet({
leaflet() %>%
setView(lng = 35.2137, lat = 31.7683, zoom = 8) %>%
addProviderTiles("CartoDB.Positron")
})
# Update heatmap based on selected mode
observe({
filtered_data <- if (input$mode == FALSE) manual_data() else animation_data()
leafletProxy("event_map", data = filtered_data) %>%
clearHeatmap() %>%
addHeatmap(
lat = ~latitude,
lng = ~longitude,
intensity = ~1,
blur = 20,
max = 0.05,
radius = 15
)
})
# Update fatality counters
output$fatality_counters <- renderUI({
cumulative <- cumulative_data()
israel_fatalities <- if ("Israel" %in% cumulative$country) cumulative %>% filter(country == "Israel") %>% pull(cumulative_fatalities) else 0
palestine_fatalities <- if ("Palestine" %in% cumulative$country) cumulative %>% filter(country == "Palestine") %>% pull(cumulative_fatalities) else 0
syria_fatalities <- if ("Syria" %in% cumulative$country) cumulative %>% filter(country == "Syria") %>% pull(cumulative_fatalities) else 0
lebanon_fatalities <- if ("Lebanon" %in% cumulative$country) cumulative %>% filter(country == "Lebanon") %>% pull(cumulative_fatalities) else 0
tags$div(
style = "text-align: center; margin-top: 20px;",
tags$div(style = "font-size: 20px; font-weight: bold; color: #333;", "Fatalities by Country Caused by Israel:"),
tags$div(style = "font-size: 18px; color: #333;", paste("Israel: ", israel_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Palestine: ", palestine_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Syria: ", syria_fatalities)),
tags$div(style = "font-size: 18px; color: #333;", paste("Lebanon: ", lebanon_fatalities))
)
})
}
shinyApp(ui = ui, server = server)
rsconnect::deployApp()
rsconnect::deployApp()
rsconnect::deployApp()
rsconnect::deployApp()
rsconnect::deployApp()
rsconnect::deployApp()
rsconnect::deployApp()
rsconnect::deployApp()